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Abstract. Methods for specifying Moore type state machines (trans-
ducers) abstractly via primitive recursive string functions are discussed.
The method is mostly of interest as a concise and convenient way of
working with the complex state systems found in computer programming
and engineering, but a short section indicates connections to algebraic
automata theory and the theorem of Krohn and Rhodes. The techniques
are shown to allow concise definition of system architectures and the
compositional construction of parallel and concurrent systems.
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1 Introduction

The engineering disciplines of programming and computer system de-
sign have been handicapped by the practical limitations of mathematical
techniques for specifying complex discrete state systems. While finite au-
tomata are the natural basis for such efforts, the traditional state-set
presentations of automata are convenient for only the simplest systems
and for classes of systems, but become awkward as state sets become large
and in the presence of partially specified behavior or compositional sys-
tems. Furthermore, it would be nice to be able to parameterize automata
so that we can treat, for example, an 8bit memory as differing from a
64bit memory in only one or a few parameters. These problems can all
be addressed by using a recursive function presentation of automata that
is introduced here.

For a set A, let A∗ be, as usual, the set of finite strings over A,
including Λ the empty string. Arbib[2] defines automata as functions f :
A∗ → X∗ with “finite support” where A is a finite set called the input
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alphabet, and X is a set called the output alphabet. That “finite support”
is traditionally a state table or state-set/transition function presentation.
This work presents automata in terms of primitive recursive functions
f : A∗ → X where the intuition is that each string describes a path from
the initial state to some “current” state and the value of the function
is the output of the system in the “current” state. Primitive recursive
algorithms for computing the output from the input sequence take the
place of state-sets and tables. The result is a method for describing Moore
type automata[9] while abstracting out details that are not interesting for
current purposes.

If a is an input and w is a string, wa is the result of appending a to
w. By defining f(Λ) = x0 and f(wa) = h(a, f(w)), we can completely
specify the operation of f . Although this is a very simple variation of
well known techniques, it produces excellent results for describing very
large scale and partially constrained state machines and also for describing
state machines constructed as a system of interconnected component state
machines.

Correspondence between a transducer M and a string func-
tion f .

Input:w ⇒ Machine:M ⇒ Output:x
f(w) = x

For example, a memory bank with n cells each holding a value between
0 and k so that Mem(w, loc) is the contents of location loc in the state
determined by w, could have an alphabet of inputs

{write[l, j] : 0 ≤ l < n, 0 ≤ j ≤ k}

and be defined by:

Mem(wa, loc) =

{
j if a = write[loc, j]
Mem(w, loc) otherwise

The condition 0 ≤ Mem(w, loc) ≤ k might be all we want to specify
about the initial value.

A second flavor of primitive recursion can be used to specify automata
products that model composition and parallel (and concurrent) state
change. The basic idea is to construct F from f1 . . . , fn and a “glue”
function ϕ that defines the connections between components. Write

F (w) = h(f1(u1) . . . fn(un))
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where each ui is a primitive recursive function of F and w and ϕ. Writing
ui(w) to make the functional dependency clear, ui(Λ) = Λ for the base
case, and

ui(wa) = ui(w) concatenated with ϕ(a, i, F (w)).

This simultaneous recursive definition[10] corresponds to a very general
form of automata product. The intuition is that ϕ(a, i, F (w)) is the input
sequence generated for component i when a is applied to the composite
system.

The two factors case is illustrative. Write w ◦ u to indicate concate-
nation.

Input:w → ϕ

(
Input:u1 → M1 → Output:x1

Input:u2 → M2 → Output:x2

)
→ h → Output:x

⇑ ⇓
⇐ ⇐========= feedback ⇐======== ⇐==

F (w) = h(f1(u1), f2(u2))

ui(Λ) = Λ

ui(wa) = ui(w) ◦ ϕ(a, i, F (w))

While the corresponding automata product has been described in the
literature since the 1960s (see Gcseg’s monograph[4] and see Domosi[3]
for a more recent and more “algebraic” treatment) the presentation in
terms of simultaneous primitive recursion is original to this line of work
as far as I know1

For concreteness, consider a parallel implementation of a k element
shift register. The components are copies of function LV that are simple
storage cells over a set V so that LV (Λ) = 0 and LV (wb) = b for b ∈ V .
The input alphabet is the set

{RotateLeft ,Left [b],Right [b] : b ∈ V }

R(w) = (LV (u1) . . . , LV (uk))︸ ︷︷ ︸
k

(1)

ui(Λ) = Λ (2)

1 I began using the general product as a semantics for a primitive recursive modal
logic[12, 11] but eventually discovered that the formal logic was just an impediment
to understanding.
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ui(za) = ui(z) ◦ ⟨v⟩ (3)

where

v =


b if i = 1 and a = Right [b]
LV (ui−1(z)) if i > 1 and a = Right [b]
b if i = k and a = Left [b]
LV (ui+1(z)) if i < k and a = Left [b] or a = RotateLeft
B(uk(z)) if i = 1 and a = RotateLeft

(4)

In what follows, the correspondence between string functions and trans-
ducers is made precise, the correspondence between the simultaneous re-
cursion scheme given above to a ”general product” of automata is proven
and some implications are drawn for the study of automata structure and
algebraic automata theory. Companion technical reports describe practi-
cal use.

2 Automata and string functions

A Moore machine or transducer is usually given by a 6-tuple

M = (A,X, S, start , δ, γ)

where A is the alphabet, X is a set of outputs, S is a set of states,
start ∈ S is the initial state, δ : S × A → S is the transition function
and γ : S → Xis the output function. In general, I am not requiring S to
be finite although finite machines are the key subclass when we describe
actual computing devices/programs. Sometimes it is useful to use, for
example, an unbounded counter or an unlimited memory in a proof or
construction so the generality is convenient.

GivenM , use primitive recursion on sequences to extend the transition
function δ to A∗ by:

δ∗(s, Λ) = s and δ∗(s, wa) = δ(δ∗(s, w), a). (5)

So γ(δ∗(start , w)) is the output of M in the state reached by following
w from M ’s initial state. Call fM (w) = γ(δ∗(start , w)) the representing
function of M .

If fM is the representing function of M , then f ′(w) = g(fM (w)) rep-
resents M ′ obtained by replacing γ with γ′(s) = g(γ(s)), but it may be
that M ′ is no longer minimal.

The transformation from string function to transducer is also simple
and depends on the well known congruence relation. Given f : A∗ → X



Recursive Automata and Products 5

define function (f+w) : A∗ → X so that (f+w)(u) = f(w◦u). Intuitively,
if w1 and w2 lead to the “same state” then following any sequence of inputs
from that state produces the same output, no matter whether we began
by following w1 or w2. In this case, (f + w1) = (f + w2) as functions
even though w1 and w2 may be different strings. So we can consider each
(f + w) to represent a state. Let Sf be the set of all the states of f .

Sf = {(f + w) : w ∈ A∗} (6)

Say f is finite if and only if Sf is finite. Define δf ((f +w), a) = (f +wa)
and define γ(f + w) = (f + w)(Λ) = f(w). Then with startf = (f + Λ)
we have a Moore machine

M(f) = {A,X, Sf , startf , δf , γf}

and, by construction f is the representing function for M(f). If Sf is
finite with cardinality k, say that the state set size of f is k

A similar construction can be used to produce a monoid from a string
function as discussed below in section 3.

2.1 Products

Suppose we have a collection of (not necessarily distinct) Moore machines
Mi = (Ai, Xi, Si, start i, δi, λi) for (0 < i ≤ n) that are to be connected to
construct a new machine with alphabet A using a connection map ϕ and
an output map Γ . The output map simply computes a composite output
from the tuple of factor outputs. When an input a is applied to the system,
the connection map computes a string of inputs for Mi from the input a
and the outputs of the factors (feedback). The general product I use here
is a variant of the product described in Gcseg’s monograph[4]. In contrast
to [4], I have made the connection maps generate string instead of single
events so that the factors can run at non-uniform rates. If ϕ(a, i,x) = Λ,
then Mi skips a turn.

Definition 21 General product of automata
Given Mi = (Ai, Xi, Si, start i, δi, γi) and Γ and ϕ define the Moore ma-
chine: M = An

i=1[Mi, Γ, ϕ] = (A,X, S, start , δ, γ)

– S is the set of n-tuples over the Si, S = {(s1 . . . , sn) : si ∈ Si}
– start = (start1 . . . , startn)
– X = {h(x1 . . . , xn) : xi ∈ Xi}
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– γ((s1 . . . , sn)) = Γ (γ1(s1) . . . , γn(sn)).
– δ((s1 . . . , sn), a) = (δ∗1(s1, ϕ(a, 1, γ(s))) . . . , δ

∗
n(sn, ϕ(a, n, γ(s)))).

One thing to note is that the general product, in fact any product
of automata, is likely to produce a state set that contains unreachable
states. There is no analogous problem in function domain

Theorem 1 If each fi represents Mi and F (w) = h(f1(u1) . . . , fn(un))
and ui(Λ) = Λ
and ui(wa) = ui(w) ◦ ϕ(a, i, F (w))
and M = An

i=1[Mi, h, ϕ] then F represents M

Proof: Each fi represents Mi so

fi(z) = γi(δ
∗
i (start i, z)) (7)

Note that each s in the state set of M is a tuple s = (s1 . . . sn). We know
γ(δ∗(start , w)) = Γ (γ(s)) = Γ (. . . γi(δ

∗
i (start i, wi)) . . .) for some wi. All

we have to show is that

δ∗(start , w) = (. . . δ∗i (start i, ui(w)) . . .) (8)

and then we have

γ(δ∗(start , w)) = Γ (. . . γi(δ
∗
i (start i, ui(w))) . . .).

It follows immediately that

γ(δ∗(start , w)) = Γ (. . . fi(ui(w))) . . .) = F (w)

Equation 8 can be proved by induction on w. Since ui(Λ) = Λ the base
case is obvious. Now suppose that equation 8 is correct for w and consider
wa.

Let δ∗(start , w) = s = (s1 . . . , sn) and let ui(w) = zi. Then, by
the induction hypothesis si = δ∗i (start i, zi), and, by the argument above
γ(δ∗(start , w)) = F (w). So:

δ∗(start , wa) = δ(δ∗(start , w), a) (9)

= δ(s, a) (10)

= (. . . δ∗i (si, g(i, a, γ(s))) . . .) (11)

= (. . . δ∗i (δ
∗
i (start , ui(w)), ϕ(a, i, F (w))) . . .) (12)

= (. . . δ∗i (start , ui(w) ◦ ϕ(a, i, F (w))) . . .) (13)

= (. . . δ∗i (start , ui(wa)) . . .) (14)
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proving 8 for wa.

It follows directly that if M is represented by F , and F is defined by
simultaneous recursion, then F can also be defined by single recursion —
although such a definition may be impractical because of the large state
set size.

3 Structure

A number of results follow from theorem 1.

Theorem 2 For M and f constructed as products as above in theorem
1.

– There are an infinite number of distinct products M ′ = Ak
i=1[Ni, gi]

so that f represents M ′ as well as M .

– If all of the Mi are finite state, M is finite state (by construction).

– If all of the fi are finite state, f is finite state ( since it represents a
finite state Moore machine).

– If f is finite state then there is some M ′ = Ak
i=1r[Zi, g, h] where f

represents M ′ and each Zi is a 2 state Moore machine. In fact k =
⌈log2(|SM ′ |)⌉. This is simple binary encoding.

False modularity is a common problem in programming and computer
engineering. We can almost always divide a complex system into simpler
parts but the result may be more complex than the original,particularly
if have just moved complexity into the communications from the compu-
tation. Suppose F (w) = (f1(u1) . . . fn(un)) is finite where each fi has a
smaller state set than F . Consider the function f ′

i(w) = fi(ui(w)). It may
well be that the state set size of f ′

i is not smaller than the state set of F
because ui implictly smuggles in a large state set.

If f is finite where M(f) has a state set with cardinality k, there is
always some F (w) = h(B(u1) . . . B(un)) where n = ⌈log2 k⌉, and B is a
binary store, and so that F (w) = f(w) for all w. For this construction,
we number the states of M(f) from 0, . . .K − 1 and encode this num-
ber as a binary string into the component B factors. The glue function
ϕ(a, i, F (w)) computes the encoded number c from F (w), uses that to
index the elements of Sf , computes δ(a, sc), looks up the index c′ of the
result, and assigns the ith bit of the result to the ith component. The sum
of the number of states in the construction of F is 2n ≤ 2 log2(k) + 1
for an apparent vast simplification. But it’s clear that this brute force
reduction basically moves all the hard work to the glue function and, not
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surprisingly f ′(w) = fi(ui(w)) may turn out to have a state set as large
as the state set of F .

There are a number of ways to limit the “complexity” of glue that
might turn out to be interesting. One way is to use the “cascade” products
that are studied in classical algebraic automata theory.

3.1 Cascade Decompositions

Say that a glue function ϕ(a, i, (x1 . . . xn)) is loop-free if it does not de-
pend on xj for j ≥ i. That is, ϕ is loop-free if the outputs of only lower
numbered components can affect the input to each component. In particu-
lar ϕ(a, 1,x) does not depend on x at all. Say F (w) = (f1(u1) . . . , fn(un))
is loop-free if and only if the glue function of F (w) is loop-free.

The Myhill/Nerode congruence produces a monoid from any f : A∗ →
X consisting of the set of functions σw : Sf → Sf where σw((f + z)) =
(f+z◦w). Note that if (f+z1) = (f+z2) then σw((f+z1)) = (f+z1◦w) =
(f + z2 ◦ w) = σw((f + z2)) by definition, preserving independence of
representative. And σΛ is clearly an identity σwσΛ(s) = σw(s) = σΛσw(s).
Finally, associativity is inherited from the associativity of concatentation
since in this case function composition is equivalent to concatenation
of subscripts. The set of maps σw : w ∈ A∗ is therefore a monoid under
composition of fuctions. The monoid is finite if Sf is finite. So we can
now apply all the results from algebraic automata theory although in a
functional framework some things are simpler.

Call the monoid defined above, the characteristic monoid of a string
function. Note that for a glue-free composition, u1(w◦z) = u1(w)◦u1(u).
In fact, u1 is a homomorphism from the free monoid A∗ to the monoid
{u1(w) : w ∈ A∗} with concatenation as the operator of both monoids.
This carries over so that the characteristic monoid of the first factor ma-
chine must be a homomorphic image of the characteristic monoid of the
composite machine. At this point we know, for example, that if the char-
acteristic monoid of F is a simple group, than f must either be trivial or
the characteristic monoid of f is isomorphic to the characteristic monoid
of F .

Let Tn(Λ) = 0 and Tn(wa) = T (w) + 1 mod n. Now define Gn as
follows:

Gn(w) = (T2(u1) . . . , T2(un)) (15)

u1(wa) = u1(w) ◦ ⟨a⟩ = wa (16)

ui+1(wa) = ui+1(w) ◦
{
Λ if ∃j < i, T2(uj(w)) = 0
⟨a⟩ otherwise (17)
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This is called a “ripple carry incrementer” in digital circuit engineering:
each counter increments only if the “carry” is propagating through all
lower order counters. Put Hn(w) = Σi≤n

i=1 T2(ui)×2i−1 where the ui are as
defined for Gn. Then Hn = T2n and you cannot make a Gn which counts
mod any number other then 2n. Otherwise, the underlying monoid of Tk

has a simple group factor (a prime cyclic group) and those cannot be
factored into smaller elements without some feedback.

More comprehensive treatments of Krohn-Rhodes theory can be found
elsewhere[3, 7, 5, 8] but Hartmanis and Stearns still provide the best en-
gineering perspective on classical machine decomposition[6]. All of that
work is done using state-table or state diagram or state-set presentations
of automata. It is somewhat puzzling to see repeated references to the
functional presentation of state machines, and to recursion, without any
further development in works such as [1, 2]. Among the advantages of
working in the functional space is that state sets keep getting automat-
ically minimized (by the equivalence in the construction of Sf ), state
names are in a canonical form if they need to be referenced at all.

For example, Michael Arbib notes the following:

The reader may share the disconcertion I felt on first realizing the
irreducibility of machines was not equivalent to irreducibility of
semigroups. The reason for this inequivalence is simply that the
output maps of M1 and M2 may make their output sets so small
that neither M1 nor M2 alone can simulate M although one of SM

1

and SM
2 is big enough to simulate M . ( Chapter 3 p. 46 of [1])

But using functional presentations, much of this goes away. The state
sets of some f and of f ′(w) = g(f(w)) may be radically different. The
state set is generated by the operation of the function and is automatically
minimized.

3.2 Decompositions with feedback

While the cascade decompositions may simplify the interconnect in one
way, they do not necessarily indicate the most efficient or interesting
decomposition in practice. Cascades are good designs for ”pipelined” ex-
ecution but may be slow if we have to wait for the data to propagate to
the terminal element. And group qualities in data structures can corre-
spond to ”undo” properties. For example, consider a circular buffer - like
those commonly used for UNIX type fifos/pipes. The idea is that ”write”
operations push data into the pipe and ”read” operations remove data in
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order of the ”writes”. The memory used to hold the data is allocated in a
cycle. One way to implement such a buffer is to decompose it into an ar-
ray of k memory locations and a mod k counter. A write operation causes
an increment of the counter and a store of data in the appropriate mem-
ory location. The increment has an inverse, the write does not. But the
result is that a write can be “forgotten”. Perhaps factoring off group-like
components will reveal other possibilities for this type of partial inverse.

As a final note indicating an unexplored realm, consider limitations
of feedback to one level so that ϕ(a, i, (x1 . . . , xn) may depend on xj for
j ≤ i+1. This limitation allows pipeline stages to, for example, stall until
a computation completes in the next stage. For example, if process P1 is
sending data over a UNIX type pipeline to P2, we would represent it as
a product in which a third machine representing the buffering action of
the pipe mechanism was placed in between the two process machines and
P1 stalls when the buffer is full and P2 stalls when the buffer is empty.
In this case, P1 must get feedback from the buffering component and the
buffering component must get feedback from P2, but P2 only receives
downstream data.
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