
The RTLinux Manifesto

Victor Yodaiken

Department of Computer Science
New Mexico Institute of Technology

Socorro NM 87801
yodaiken@cs.nmt.edu
http://www.rtlinux.org

ABSTRACT

RTLinux is the hard realtime variant of Linux
that makes it possible to control robots, data
acquisition systems, manufacturing plants, and
other time-sensitive instruments and machines.

1 Introduction

Real-Time Linux (RTLinux) is a version of
Linux that provides hard real time capability. A
NASA computer running RTLinux flew into the
eye of Hurricane Georges to collect data[14]; the
Jim Henson Creature Shop in Hollywood is de-
veloping a RTLinux application to control “an-
imatronic” things used in movies; RTLinux has
been used for video editors, PBXs, robot con-
trollers, machine tools, and even to stop and start
hearts in medical experiments1

RTLinux provides the capability of running
special realtime tasks and interrupt handlers on
the same machine as standard Linux. These
tasks and handlers execute when they need to
execute no matter what Linux is doing. The
worst case time between the moment a hardware
interrupt is detected by the processor and the

moment an interrupt handler starts to execute is
under 15 microseconds on RTLinux running on
a generic x86. A RTLinux periodic task runs
within 35 microseconds of its scheduled time on
the same hardware. These times are hardware
limited, and as hardware improves RTLinux will
also improve. Standard Linux takes up to 600
microseconds to start a handler and can easily
be more than 20 milliseconds (20,000 microsec-
onds) late for a periodic task2. As an unfair
but fun comparison, an optimistic study of MS-
Windows/NT didn’t even bother to try to mea-
sure times under a millisecond and still found
that NT numbers were essentially the same as
the standard Linux numbers, while Windows/98
was up to 140 milliseconds too late on a periodic
task [7]. To be fair, there are now Window-NT
versions of the RTLinux method and these seem
to get low level timings that are sometimes al-
most as good and generally not more than two
times worse than RTLinux[6].

What makes RTLinux useful is that it extends
the standard UNIX programming environment
to realtime problems. RTLinux realtime inter-
rupt handlers and tasks can be connected to or-
dinary Linux processes – either via a device in-
terface where Linux processes read/write data,
or via shared memory. A standard Linux pro-

1RTLinux is released, as is, with no warranty of any
kind. Use at your own risk. 2A process using sched setsched

yodaiken
Text Box
Originally published in the Proceedings of the 5th Linux Expo, Raleigh, NC, 1999. (c) Victor Yodaiken.
Annotations (c) Victor Yodaiken (2009).
It's been 10 years and I wanted to put in some comments.

yodaiken
Callout
RTLinux is now a trademark of WindRiver/Intel and does not refer to any FSM product. FSM sold RTLinux to WindRiver in 2007, retaining only technology for enterprise computing

yodaiken
Sticky Note
times dropped with hardware improvements to just a few microseconds. These times were limited by the old ISA bus.

yodaiken
Sticky Note
I am no longer associated with the NMIT.
FSMLabs is now headquartered in Austin Tx.

www.fsmlabs.com
yodaiken@fsmlabs.com

yodaiken
Cross-Out

yodaiken
Highlight

yodaiken
Sticky Note
The split program model was the key to productivity.

yodaiken
Sticky Note
This was written before the Linux developers made a massive engineering investment in a variety of attempts to improve real-time performance. See below.

cess, perhaps executing a shell script or a Perl
program, can collect data from a realtime han-
dler or task, process and log it and display the
results on X-Windows. Using Perl scripts to to
control a realtime device from an ordinary PC
may seem ridiculous, but it works surprisingly
well.

The rest of this paper is in five parts. Sec-
tion 2 is an introduction to realtime comput-
ing. Section 3 is an explanation of why real-
time computing is so hard to integrate with non-
realtime computing and why obvious methods –
like making the standard kernel directly support
realtime – are doomed to failure. Section 4 ex-
plains how RTLinux works and section 5 shows
how to write applications. The last section cov-
ers future directions and has some random ac-
knowledgements.

2 An introduction to realtime
programming.

“Realtime” is is an over-used term that can be
used to mean “right away” or “fast” as in “re-
altime stock quotes”. RTLinux is addressed at
hard realtime systems: those with timing dead-
lines that cannot be missed. The traditional
uses for these systems are to control or mon-
itor some physical system or device such as a
motor, an assembly line, a telescope, or an in-
strument. Telecommunications and networking
devices often also need realtime control. Con-
sider the difference between the response time
needed for text editor, a video display, and a
program controlling the shutdown sequence of
a liquid fuel rocket. � The text editor should respond quickly to

user commands, but if it takes a half a sec-
ond to update a display every now and then,
few users will notice.

� Video displays should almost always keep
up with the frame rate. A half a sec-
ond freeze will be noticed and a couple of
freezes in a minute will make the system
unpleasant. If the program starts dropping
frames, it can sometimes use an algorithm
to hide the missing frames by interpolation. � The rocket shutdown sequence must meet
deadlines or the rocket may explode. A sin-
gle freeze of a half a second at the wrong
moment might have a spectacular and ter-
minal result.

So the text editor needs to be fast and respon-
sive, the video display needs to usually meet
timing deadlines and the rocket control needs
to be able to guarantee response times. In the
CS literature, the video display would be called
a soft realtime system, and the rocket control
would be called a hard realtime system [13, 12].

Most hard realtime applications have failure
modes that are not as spectacular as those of liq-
uid fuel rockets, but they need guaranteed timing
nonetheless. If you are controlling a servo mo-
tor through the parallel port of a cheap PC[8],
each timing jitter of 10 microseconds causes an
error of one degree. If you are collecting data
from a scientific instrument or video frame grab-
ber, a missed deadline may result in missed data
or even a confused device. For high speed net-
works, a delay of a couple of microseconds may
drop a packet and cause a major performance
loss as the system times out and requests a re-
transmit. The distinctive property of hard real
time systems is this requirement for guaranteed
timing – an average time response of 5 millisec-
onds on our rocket controller will not make up
for a single worst case of 100 milliseconds.

Hard realtime systems cannot use av-
erage case performance to compen-
sate for worst case performance.

yodaiken
Sticky Note
Compare to
"A “soft real-time system” is characterized by the ability to perform a task, which on average, is executed according to the desired schedule. A video display is a good example, where the loss of an occasional frame will not cause any perceived system degradation, providing the average case performance remains acceptable. Although techniques such as interpolation can be used to compensate for missing frames, the system remains a soft real-time system, because the actual data was missed, and the interpolated frame represents derived rather than actual data."

In RTAI: Real-Time Application Interface
April 1st, 2000 by P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes and D. Beal

yodaiken
Sticky Note
Financial trading is becoming hard real-time.

Suppose that we have a board that samples
analog lines and produces an 8 bit result every
100 microseconds. Most boards like this are de-
signed with hardware buffers right now so that
they can compensate for the non-realtime behav-
ior of Microsoft Windows and NT. The analog to
digital device generates samples and puts them
in the buffer. If the buffer is deep enough, say
with room for 512 samples, then we won’t lose
any data if we read the buffer at least once ev-
ery 50 milliseconds. There are three problems
with this scenario. The first problem is that even
though 50 milliseconds is a long time, it is easy
to miss the deadline in even a moderately loaded
system. Ordinary Linux can’t keep up, even us-
ing the so-called “realtime” POSIX extensions.
A second problem is that if the hardware has
to cope with software timing uncertainties, the
hardware becomes more complex and costly. Fi-
nally, if we need to control a device – to react to
data “in real time” – then 50 milliseconds may
be too long and the hardware buffers may cause
instability as they introduce delays in the control
loop.

RTLinux provides support for hard realtime
programs and will, in the future, offer sup-
port for some kinds of quality of soft realtime.
RTLinux leaves the problem of “fast” applica-
tions to standard Linux. Making non-realtime
applications run fast is incredibly complex. It
turns out that much of what you can do to
speed up the non-realtime performance of appli-
cations introduces unpredictable delays that are
unhealthy for realtime. The obvious example is
paging of virtual memory. If 99.99% of program
memory references are in the page cache, and if
a hit takes one time unit and a miss takes 500
time units, then over a sufficiently large time pe-
riod the average access time is ���� time units –
virtual memory is practically free. On average,
virtual memory is a major performance win, be-
cause processes will be able to run as if there

was a much larger amount of memory available
— with close to zero cost. On the other hand,
a realtime task that misses its first 10 pages will
take 5000 time units to do what could otherwise
be done in 10 time units and this worst case per-
formance is what matters.

Because of these problems, back in the far
past3 realtime systems were hand made, simple
contraptions designed by tough, rugged, engi-
neering types who scorned compilers and vir-
tual memory and thought that alphanumeric dis-
plays were unnecessary luxuries. In these sys-
tems, optimizing worst case performance was
quite straightforward. In fact, many realtime
systems still are designed as loops that execute
on a bare machine. The program loops through
a list of simple tasks and the longest time before
a task will run is the sum of the execution times
of all the tasks on the list.

counter=500;
while(1){

if(data_on_sensor()){
read_sensor();
compute_output();
counter--;

}
if(!counter){
output();
counter=500;
}

}

The problem with this design is that is does
not scale. As realtime applications get more
complex, they need more complex support. If
you want to have a realtime control program for
an aircraft engine diagnostic system that moni-
tors hundreds of sensors and also needs to dis-
play graphical data, interact with a database,
connect to a network and even run a web inter-
face, then writing a control loop system is out of

3Well before Dave Miller was born.

yodaiken
Highlight
In retrospect, the same thing can be said about threads, which are certainly more scalable than a control loop, but also become very difficult to control and debug.

yodaiken
Highlight

yodaiken
Highlight

yodaiken
Sticky Note
Timing from sense to signal is key and often overlooked.

the question. The problem then becomes one
of keeping the fast, predictable operation that
you can get from control loop on a bare ma-
chine, while running in a much more sophisti-
cated software environment. One solution is to
add realtime support to a non-realtime kernel,
but that’s not as simple as it may sound.

3 You can put racing stripes
on a bulldozer, but it won’t
go any faster.

Before describing how RTLinux works, it is
worthwhile to explain why what seems like a
more straightforward approach does not work.
You could just take an operating system like
Linux and stick realtime support into the kernel.
For example, you could allow for “realtime”
processes with locked memory (so there were
no delays while virtual memory was swapped
in) and a special scheduler to always run these
processes first and in a predictable order. This
approach is exemplified in the part of the POSIX
1003.13[10] standard called “Multi-Purpose Re-
altime System Profile” (PSE54). RTLinux does
not try to meet this standard, but standard
Linux does support PSE54 compliant mlock
(memory lock) and sched setsched (spe-
cial schedule) system calls and POSIX RT sig-
nals.

To see how well the POSIX PSE54 approach
works under standard Linux, we can write a sim-
ple program that asks to be specially scheduled
and then calls udelay to suspend itself for, say,
50 milliseconds. On a Pentium, it is possible
to read the processor cycle counter before and
after this delay to get reasonably precise tim-
ing. We can set up a loop and look for aver-
age and worst case delay. On an idle standard
Linux system, the task is remarkably precise:

the time for 1000 trips through the loop is rock
solid and the worst case deviation from aver-
age is about 100 microseconds in my test on a
333MHz dual PII system. But when I/O activity
begins, the worst case deviation rapidly rises to a
half a millisecond and if one starts up Netscape,
the worst case deviation exceeds a couple of
milliseconds. A simple test program that
does write(1,buff,BIGNUMBER) causes
the “realtime” task to experience delays of over
18 milliseconds — even though the average re-
mains unchanged. Ordinary standard Linux pro-
cesses, of course, do a lot worse. So we could
not reliably use the data acquisition card dis-
cussed above if all we had to work with were
standard Linux processes and POSIX PSE54.
For comparison, the same test on RTLinux gives
worst case difference between minimum and
maximum (not between max and average) of un-
der 25 microseconds – almost 1000 times better.
Running the RTLinux task at 500 microsecond
intervals gives identical precision, and Linux
continues to run quite well. Running the POSIX
“realtime” process at 500 microsecond intervals
stops Linux completely.

No other general purpose OS does any bet-
ter than standard Linux in mixing RT with stan-
dard services — all for the same reasons. The
most obvious problem is that the most useful
design rule for general purpose operating sys-
tems is: optimize the common case. Thus, Linux
SMP locks are exceptionally fast when there is
no contention — the common case – and pay
a significant price when there is contention. To
use another design would slow down general op-
eration of the system in order to optimize some-
thing that should happen only rarely. Similarly,
standard Linux interrupt handling is really fast
for a general purpose operating system. In some
of our measurements, standard Linux averages
2 microseconds to get to the interrupt handler
on reasonably standard x86 PCs. That’s impres-

yodaiken
Sticky Note
This is exactly what the Linux developers did and, not surprisingly, they got the same results as everyone who tried the same technique before them.

yodaiken
Sticky Note
Unfortunately, this is no longer the case.

sive and it is critical for making users of graphi-
cal user interfaces and interactive networks feel
happy. Worst case behavior is not so impressive
and some interrupts are delayed by hundreds of
microseconds. The problem is that it is not so
easy to figure out how to decrease worst case
without increasing average case.

If you look at Linux code long enough, you
will see many more fundamental contradictions
with realtime requirements. A few examples
should make the case. � “Coarse grained” synchronization means

that there are long intervals when one task
has exclusive use of some data. This
will delay the execution of a realtime task
that needs the same data structures. “Fine
grained” synchronization, on the other
hand, will cause the system to spend a lot
of time uselessly locking and unlocking
data structures, slowing down all system
tasks. Linux uses coarse grained schedul-
ing around some of its core data structures
because it would be stupid to slow down
the whole system to reduce worst case. � Linux will sometimes give even the most
unimportant and nicest task a time-slice,
even when a more important task is
runnable. It would not be smart to never
run a background process that cleans up log
files, even if a higher priority computation
is willing to use up all available processor
time. But in a realtime system, the high-
est priority task should not wait for a lower
priority task. In a realtime system, you can-
not assume that low priority tasks will ever
make progress – but in a general purpose
operating system we do assume that low
priority tasks will progress. � Linux will reorder requests from tasks to
make more efficient use of the hardware.

For example, disk block reads from the
lowest priority processes may take prece-
dence over read requests from the highest
priority process so to minimize disk head
movement or to improve chances of error
recovery. � Linux will “batch” operations to make
more efficient use of the hardware. For
example, instead of freeing one page at a
time when memory gets tight, Linux will
run through the list of pages clearing out
as many as possible — delaying execu-
tion of all processes. It would be counter-
productive for Linux to run the swapper
each time a page was needed, but the worst
case certainly gets a lot worse. � Linux will not preempt the execution of
even the lowest priority tasks during system
calls. While the RC5 process is in the mid-
dle of “fork”, a message that arrives for the
video display process will sit on the queue.
To get around this problem, Linux would
have to put in preemption points that would
slow down all system calls. � Linux will make high priority tasks wait for
low priority tasks to release resources. If
the RC5 program allocates the last network
buffer and the robot arm controller needs
to send a message to stop the robot arm,
the robot arm controller will just have to
wait until some other process frees a net-
work buffer.

You could argue that since there are operating
systems mixing realtime and standard services
in the same kernel, the above must be wrong.
Those systems work, and are substantial techni-
cal achievements, but they are complicated and
quite slow. You can have deterministic worst
case behavior time on Solaris RT, but the worst

yodaiken
Note
These examples reappeared a year later, nearly word for word without any attribution in

RTAI: Real-Time Application Interface
April 1st, 2000 by P. Mantegazza, E. Bianchi, L. Dozio, S. Papacharalambous, S. Hughes and D. Beal

yodaiken
Sticky Note
This is exactly what Linux developers have done over the last couple of years. The result, in my opinion, is not too impressive. Massive speedup in processors has absorbed a lot of the extra execution time cost of this design - when this paper was written, we used 33MHz processors with ISA bus connections to I/O devices so 3GHz quad cores with modern I/O are much more capable. An enormous effort has gone into replacing the simple lock system of the 1999 era Linux with, in my humble opinion, a nightmarish Rube-Goldberg contraption that requires many cycles and lots of engineering work without providing much performance advantage. Linux "real-time" is still slow and unreliable. It's worth going back the archives and reading Larry McVoy's comments at the time on "fine grained locking" for SMP enterprise computing.

yodaiken
Sticky Note
Marked set by yodaiken

case is really worse than you might be willing to
tolerate. In the academic realtime literature, it is
often stated that realtime does not require speed,
it requires determinism (fixed worst case tim-
ings). That’s true as far as it goes, but you can’t
do realtime video editing if your worst case be-
havior only allows for a frame rate of one frame
every 2 seconds.

Since realtime and general purpose operating
systems have contradictory design goals, it is
not surprising that what is smart in one system is
deadly in another. If we attempt to satisfy both
design goals in the same system, we end up with
something that does neither very well.

4 The RTLinux solution

About 20 years ago, researchers at Bell Labs
built an experimental operating system called
MERT[9]. This operating system was intended
to run both realtime and general purpose appli-
cations. But instead of trying to make one op-
erating system that could support both, MERTs
designers tried to make a system in which a
realtime operating system and a general pur-
pose (time-sharing) operating system worked to-
gether. The designers wrote:

... the availability of a sophisticated
time-sharing system in the same ma-
chine as the realtime operating sys-
tem provides powerful tools which can
be exploited in designing the man-
machine interface to the real-time pro-
cesses.

That is, MERT’s designers claimed that by
decoupling the realtime OS from the non-
realtime OS, they were able to allow applica-
tion developers to use the services of the non-
realtime OS 4

4The MERT paper appeared in a famous 1978 issue
of the Bell Systems Technical Journal. This issue also

RTLinux works by treating the Linux OS ker-
nel as a task executing under a small realtime
operating system. In fact, Linux is the idle
task for the realtime operating system, execut-
ing only when there are no realtime tasks to run.
The Linux task can never block interrupts or pre-
vent itself from being preempted. The techni-
cal key to all this is a software emulation of in-
terrupt control hardware. When Linux tells the
hardware to disable interrupts, the realtime sys-
tem intercepts the request, records it, and returns
to Linux. Linux is not ever allowed to really dis-
able hardware interrupts. No matter what state
Linux is in, it cannot add latency to the realtime
system interrupt response time. When an inter-
rupt arrives, the RTLinux kernel intercepts the
interrupt and and decides what to do. If there
is a realtime handler for the interrupt, the han-
dler is invoked. If there is no realtime handler,
or if the handler indicates that it wants to share
the interrupt with Linux, the interrupt is marked
pending. If Linux has asked that interrupts be
enabled any pending interrupts are emulated and
the Linux handlers are invoked – with hardware
interrupts re-enabled.

No matter what Linux does, whether Linux
is running in kernel mode or running a user pro-
cess, whether Linux is disabling interrupts or en-
abling interrupts, whether Linux is in the middle
of a spin-lock or not, the realtime system is al-
ways able to respond to the interrupt.

RTLinux decouples the mechanisms of
the realtime kernel from the mecha-
nisms of the general purpose kernel so
that each can be optimized indepen-
dently and so that the RT kernel can
be kept small and simple.

carried articles reporting on porting C code to multiple
machines (a novel idea at the time), a new text process-
ing system called troff, the programmers workbench, and
the original papers on UNIX and C. You should read it or
reread it.

yodaiken
Sticky Note
And in 2009, Linus Torvalds complained about how bloated Linux had become.

yodaiken
Sticky Note
This idea is now being rediscovered by "hypervisor" designers who seek to improve performance and break from the heavyweight hypervisor model in which most of the functionality of an operating system is duplicated in the hyperkernel

RTLinux is designed so that the RT kernel
never has to wait for the Linux side to release
any resources. The RT kernel does not request
memory, share spin-locks, or synchronize on
any data structures — except in tightly con-
trolled situations. For example, the communica-
tion links used to move data between RT tasks
and Linux processes are non-blocking on the RT
side: there is never a case where the RT task
waits to queue or dequeue data. The near fail-
ure of the Mars Lander was caused by an in-
teraction between a realtime task and an oper-
ating system service that assumed it was ok to
de-schedule a process. One VxWorks task ac-
quired a semaphore and a high priority task was
then put to sleep when it tried to write to a pipe
protected by that semaphore. RTLinux does not
have any such hidden points of synchronization.

Of course, it doesn’t do much good to have
a realtime system that can’t communicate at
all with the non-realtime system, so RTLinux
provides both shared memory (using a crude
method right now) and also a device interface
that lets Linux processes read and write to real-
time tasks.

One of the key design principles of RTLinux
is that the more that is done in Linux — and
the less that needs to be done on the RT side —
the better. Linux takes care of system and de-
vice initialization and of any blocking dynamic
resource allocation. Device initialization can be
left to Linux. There cannot be any realtime con-
straints at boot time, so there is no need for the
RT system to be involved. Blocking dynamic
resource allocation is left to Linux. Any thread
of execution that is willing to be blocked when
there are no available resources cannot have
hard realtime constraints. For example, there is
no way for a RT task to call malloc or kmalloc or
any other memory allocator. If the task does not
statically allocate memory, it does not have ac-
cess to that memory. Finally, RTLinux relies on

the Linux loadable kernel module mechanism to
install components of the RT system and to keep
the RT system modular and extensible. Loading
a RT module is not a realtime operation and it
can also be safely left to Linux. The job of the
RT kernel is to provide direct access to the raw
hardware for realtime tasks so that they can have
minimal latency and maximal processing when
they need it. Anything else just gets in the way.

So RTLinux is a variation, a better variation
in my humble opinion, of the basic idea found
in MERT. Around the same time that we de-
veloped and released RTLinux, Greg Bollella
[4, 3] was working on putting a realtime ker-
nel on the same machine as the general purpose
IBM MicroKernel and a little later two compa-
nies produced systems in which a realtime ker-
nel shares the machine with Windows NT [2, 5].
All of these systems use some variation on the
technique of putting a virtual machine layer be-
tween the general purpose OS and the interrupt
hardware. The low level times measured by the
Radisys authors [6] and by Bollella are similar
to the RTLinux times: reflecting mostly the lim-
itations of PC motherboard design. It’s irritat-
ing to observe an out-of-order execution, deeply
pipelined, highly cached, 400MHz processor,
turn into an expensive space heater as it negoti-
ates a 8 bit ISA bus path to its legacy original-PC
system timer.

5 Using RTLinux

RTLinux is very much module oriented. To use
RTLinux, you load a modules that implement
whatever RT capabilities you need. Two of the
core modules are the scheduler and the module
that implements RT-fifos. If the services pro-
vided by these modules don’t meet the require-
ments of the application, they can be replaced
by other modules. For example, there are two

yodaiken
Sticky Note
This turned out to be both good and bad. Eventually, RTLinuxPro combined modules into a single one in order to reduce the complexity of setting up an application.

yodaiken
Sticky Note
This fundamental point is often misunderstood or neglected. A task executing in some OS environment that must block to request resources that may not be available within a known time bound cannot be said to be hard real-time. Much of what a standard OS does is allocate resources among competing tasks, stalling tasks until availability. In a real-time system this means that the OS is a bottleneck and potential source of failure.

yodaiken
Sticky Note
Fortunately we now have an era where there are 8core 3GHz processors that can generate heat while jumping off to run SMM code or virtual machine management code or to run cache snooping for not share memory or ...

Interrupt control hardware

Linux

Real-Time Kernel

Linux processes

Real-Time
tasks

Block level design of RTLinux

�
�

�� .
. ��. ��

Real-Time Fifos

Figure 1: Flow of data and control

alternative scheduling modules — a “earliest
deadline first” scheduler implemented by Ismael
Rippol[11] and a rate-monotonic scheduler im-
plemented by Oleg Subbotin (see the rtlinux.org
web page)5. The basic scheduler simply runs
the highest priority ready RT task until that task
suspends itself or until a higher priority task be-
comes ready.

The original RTLinux scheduler (written by
Michael Barabanov) used the timer in “one
shot” mode so that it could easily handle a col-
lection of tasks with periods that had a small
common divisor. For example, if one task must
run every ��� time units and the other runs ev-
ery ���� time units, there is no good choice for

5The academic CS literature is deeply concerned with
the right way to schedule RT tasks. My theory is that
nobody knows yet, and that the OS should not make the
choice.

a timer period. In one-shot mode, the clock
would be set first to generate an interrupt af-
ter 331 time units and then reprogrammed af-
ter the interrupt to generate a second interrupt in
another ��� time units (minus the time needed
to reprogram the clock). The price we pay is
that we reprogram the clock on every interrupt.
For x86 generic motherboards, reprogramming
the clock is relatively slow. It turns out, how-
ever, that many applications don’t need the gen-
erality of a one-shot timer and can avoid the ex-
pense of reprogramming. Professor Paolo Man-
tegazza of the Aerospace Engineering Depart-
ment in Politecnico di Milano wrote a scheduler
that demonstrated the utility of periodic mode
and encouraged us to put it into the standard
scheduler6. The current RTLinux scheduler of-

6Professor Mantegazza is also responsible for debug-
ging floating point support in RTLinux.

yodaiken
Sticky Note
Michael is currently at Intel (November 2009).

yodaiken
Sticky Note
Sometimes, it doesn't pay to be nice -as I learned in this situation.

yodaiken
Sticky Note
This got better soon after. The problem was limited to the terrible 8523 timer which was an ISA bus device.

fers both periodic and “one shot” modes. On rtf_get is the non-blocking read opera-�
SMP systems the problem gets simpler because
there is an on-processor high frequency timer
chip that is available to the RTL system.

5.1 The API

The standard API for Version1 (based on the 2.0
Linux kernel) is as follows. � rtl_request_irq and

rtl_free_irq. These activate and
deactivate interrupt handlers. � rt_get_time returns the time in “ticks”. � rt_task_delete destroys a task and
frees its resources. � rtl_task_init sets up, but does not
schedule a task. � rt_task_make_periodic asks the
periodic scheduler to the run task at a fixed
period (given as a parameter). � rt_task_suspend takes the task off the
run queue. � rt_task_wait yields the processor un-
til the next time slice for this task. � rt_task_wakeup wakes up a sus-
pended task. � rt_use_fp allows the task to use floating
point operations. � rtf_create creates a fifo. � rtf_create_handler attaches a rou-
tine that runs under the Linux kernel to
a fifo so that user processes can be made
runnable when there is data available. � rtf_destroy frees a fifo.

tion for realtime tasks. � rtf_put is the non-blocking write opera-
tion for realtime tasks. � rtf_resize changes the size of data in
the fifo. � rtl_set_periodic_mode optimizes
the system for running a collection of tasks
that share a common fundamental period. � rtl_set_oneshot_mode optimizes
the system for cases where periodic mode
is not appropriate.

In the Version2 (based on Linux 2.2) many of
these calls have an alternate form with an addi-
tional parameter for cpu identifier. On a SMP
system, a task is associated with a particular cpu
and is only scheduled by the scheduler on that
cpu. Also, on SMP systems, some interrupts are
local and need to be given handlers per/cpu.

5.2 Examples

5.2.1 Squares

Figure 2 shows how a program to produce a
square wave on the parallel port output would
be written.

This program would be compiled as a mod-
ule, and insmod is used to start it. When
the module starts, it runs initialization code that
constructs a single task using rt task init
and then asks the realtime scheduler to run the
task every 450 ticks of the clock. On a SMP
x86 system, we have a more sophisticated timer
that used the processor clock, but on the stan-
dard motherboards we are still stuck with the an-
tique i8353 – a vestige of the original IBM PC.
In spite of this embarrassment, this task is never
more than about 40 microseconds late or early,

yodaiken
Sticky Note
Soon after this was written, at the urging of Barabanov and because of our discovery of the "minimal" POSIX profile, we made a transition to the POSIX threads API and the POSIX 1003.13 PS51 profile. This was done in order to reduce the barrier to entry for new programmers who were used to POSIX and also to avoid a process of incrementally reinventing POSIX. That is, we found ourselves needing to add to the nice simple fast API and saw that eventually we'd end up with something as big and ugly as the threads API, but different. Different should imply better and we did not have a real idea on how to make a larger API a lot better.

Now I do, though.

yodaiken
Sticky Note
MigrationConfirmed set by yodaiken

yodaiken
Sticky Note
The switch to POSIX API did not automatically solve this problem, but the POSIX threads API is, for good or bad, easily extensible with CPU parameters.

/* Module to toggle output on the parallel port */
RT_TASK my_task;
#define STACK_SIZE 3000

void code_for_rtl_task(unsigned int pin) {
static unsigned char bits = 0;
while(1){
if(bits)bits = 0;
else bits = (1<< pin);
/* write on the parallel port */
outb(bits, LPT_PORT);
/* wait till next period */
rt_task_wait();
}

}

int init_module(void)
{
RTIME now = rt_get_time();
/* Initialize a task with code code_for_rtl_task,

pin 3 ,stack size STACK_SIZE and priority 1 */
rtl_task_init(&my_task, code_for_rtl_task, 3, STACK_SIZE, 1);
/* run every 450 8253/4 ticks

(about 50 milliseconds)*/
rtl_task_make_periodic(&mytask, now, 450);
return 0;

}

Figure 2: Square wave RT program

yodaiken
Sticky Note
One of the real achievements of RTLinuxPro was a system, due to Cort Dougan, that hid all the module nonsense from users so that they had a "main" routine and the code looked like standard POSIX threads code. This required a lot of innovations in dynamic linking.

on anything from an old 386 to a 500Mhz PIII,
no matter what load is running in the system.

5.2.2 Collecting data

To make something like the analog/digital con-
verter discussed above work, we would write
two pieces of code. The first would be a realtime
module that would poll the device and then put
data into a realtime fifo. The other piece of code
would read the fifo and would run as a Linux
user process. The major change from the paral-
lel port toggling example would be in the main
loop of the function code for rtl task
which might be written something like this:

while(1){
read_data_from_hardware;
rtf_put(FIFO_ID,data,size);
/* wait till next period */
rt_task_wait();

}

On the Linux side, the realtime fifos are
devices: rtf0,rtf1 The Linux side
task could be a one line shell script:

cat /dev/rtf0 > logfile

5.2.3 Interrupt handlers

Instead of using the calls to the scheduler mod-
ule – rtl task wait, rtl task init, and
rtl task make periodic – we could sim-
ply attach our function to a timer. Using similar
task code, we could change the initializing code
as follows.

int init_module(void)
{
rtl_request_irq(CMOS_CLOCK,\

handler_ptr);
INIT_CMOS_CLOCK(FIFTYMS);

return 0;
}

Our cleanup code for the module would call
rtl free irq. The code for the handler
would look like the code for task, except instead
of calling rtl task wait it would reset the
CMOS clock to allow further interrupts.

6 What next and acknowledg-
ments

A 2.2 version of RTLinux was released in
January 1999 with some missing features, but
with improved support of SMP. A fully func-
tional version will, I hope, be released in
March. Ports are underway to Alpha and to
PowerPC. SMP with larger numbers of proces-
sors is a key goal over the next few months.
We are also rewriting the scheduler to sup-
port the minimal POSIX RT standard (not
from the PSE54 standard mentioned earlier) and
are looking at how to support QOS (quality
of service) assurances for soft realtime tasks
[12]. Other developments are several commer-
cial packages for RTLinux under development.
See http://www.rtlinux.com for com-
mercial links. Linus Torvalds once said that
the RTLinux core would become integrated with
the standard kernel in 2.3, but the availability of
pre-patched kernels makes this a less pressing
issue. News and code can always be found at
http://www.rtlinux.org.

At New Mexico Tech, RTLinux develop-
ment has been funded mostly by USENIX
(http://www.usenix.org). There is
(GPL) RTLinux development now being car-
ried out on a commercial basis and this
is being financed by industrial contracts.
RTLinux was first implemented by Michael
“FZ” Barabanov[1]. As with all open-source

yodaiken
Sticky Note
We really should have applied for a patent on the RT-fifo as well. Later on we folded RTFifos into POSIX open/read/write very satisfactorily but the mechanism of being locked on the non-RT side and being unlocked on the RT side was innovative.

yodaiken
Sticky Note
He lied!
-)

yodaiken
Sticky Note
We made a sad discovery soon after about the economics of GPL software in the embedded world. Roughly it goes like this: tiny companies investing a lot of engineering in GPL software development cannot make profits. It turns out that in the embedded market, this extends to medium sized companies. The reason is fairly obvious: you try to sell services competing with companies that don't have your development expenses - and who profit from your marketing expenses for the technology.

projects, RTLinux is a collaborative effort.
Thanks to the Linux kernel developers for such a
useful idle task and thanks to the RTLinux users
for being so enthusiastic and brave and for con-
tributing code, ideas, and interesting stories.

References

[1] Michael Barabanov and Victor Yodaiken.
Real-time linux. Linux journal, February
1997.

[2] Nick Vasilatos Bill Carpenter, Mark Ro-
man and Myron Zimmerman. Rtx real-
time subsystem for windows nt. In Win-
dows NT System Engineering Workshop.
USENIX, August 1997.

[3] Greg Bollella. Slotted Priorities: Support-
ing Real-Time Computing Within General-
Purpose Operating Systems. PhD thesis,
University of North Carolina, 1997.

[4] Greg Bollella and Kevein Jeffay. Sup-
porting co-resident operating systems. In
Proceedings of the Real-Time Technology
and Applications Symposium, pages 4–14,
May 1995.

[5] Radisys Corporation. Intime kernel.
Technical report, Radisys Corporation,
http://www.radisys.com 1997.

[6] Radisys Corporation. Intime in-
terrupt latency report. Techni-
cal report, Radisys Corporation,
http://www.radisys.com 1998.

[7] James P. Held Erik Cota-Robles. A com-
parison on windows driver model latency
performancea on windows nt and windows
98. In Proceedings of the Third Symposium

on Operating Systems Design and Im-
plementation (OSDI99), pages 159–172,
Boston, MA, Feb 1998. USENIX.

[8] Bernhard Kuhn. Servomotorensteuerung
mit rt-linux. Linux Magazine (germany),
December 1998.

[9] H. Lycklama and D. L. Bayer. The MERT
operating system. Bell System Technical
Journal, 57(6):2049–2086, 1978.

[10] The Portable Application Standards Com-
mittee of the IEEE Computer Society.
P1003.13 draft standard for information
technology — standardized application en-
vironment profile — posix realtime ap-
plication support (aep). Technical report,
IEEE, 1998.

[11] Ismael Ripoll. Earliest deadline
first scheduler. Technical report,
University of Valencia (Spain),
http://bernia.disca.upv.es/
1998.

[12] John A. Stankovic. Strategic directions in
real-time and embedded systems. ACM
Computing Surveys, 28(4):751–763, Dec
1996.

[13] John A. Stankovic and Krithi Ramam-
ritham. Hard Real-Time Systems, volume
819 of IEEE Tutorials. IEEE, 1988.

[14] C. Wayne Wright and Edward J. Walsh.
Hurricane hunting. Linux Journal, (58),
Feb 1999.

yodaiken
Sticky Note
The person I really should have thanked for this was Larry McVoy who was on the program committee and gave me excellent editing advice and was quick to grasp the essential idea and generous in his praise of it.

		2009-11-24T20:59:41-0600
	victor yodaiken

