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ABSTRACT 

RTLinux is the hard realtime variant of Linux 
that makes it possible to control robots, data 
acquisition systems, manufacturing plants, and 
other time-sensitive instruments and machines. 

1 Introduction 

Real-Time Linux (RTLinux) is a version of 
Linux that provides hard real time capability. A 
NASA computer running RTLinux flew into the 
eye of Hurricane Georges to collect data[14]; the 
Jim Henson Creature Shop in Hollywood is de-
veloping a RTLinux application to control “an-
imatronic” things used in movies; RTLinux has 
been used for video editors, PBXs, robot con-
trollers, machine tools, and even to stop and start 
hearts in medical experiments1 

RTLinux provides the capability of running 
special realtime tasks and interrupt handlers on 
the same machine as standard Linux. These 
tasks and handlers execute when they need to 
execute no matter what Linux is doing. The 
worst case time between the moment a hardware 
interrupt is detected by the processor and the 

moment an interrupt handler starts to execute is 
under 15 microseconds on RTLinux running on 
a generic x86. A RTLinux periodic task runs 
within 35 microseconds of its scheduled time on 
the same hardware. These times are hardware 
limited, and as hardware improves RTLinux will 
also improve. Standard Linux takes up to 600 
microseconds to start a handler and can easily 
be more than 20 milliseconds (20,000 microsec-
onds) late for a periodic task2. As an unfair 
but fun comparison, an optimistic study of MS-
Windows/NT didn’t even bother to try to mea-
sure times under a millisecond and still found 
that NT numbers were essentially the same as 
the standard Linux numbers, while Windows/98 
was up to 140 milliseconds too late on a periodic 
task [7]. To be fair, there are now Window-NT 
versions of the RTLinux method and these seem 
to get low level timings that are sometimes al-
most as good and generally not more than two 
times worse than RTLinux[6]. 

What makes RTLinux useful is that it extends 
the standard UNIX programming environment 
to realtime problems. RTLinux realtime inter-
rupt handlers and tasks can be connected to or-
dinary Linux processes – either via a device in-
terface where Linux processes read/write data, 
or via shared memory. A standard Linux pro-

1RTLinux is released, as is, with no warranty of any 
kind. Use at your own risk. 2A process using sched setsched 
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cess, perhaps executing a shell script or a Perl 
program, can collect data from a realtime han-
dler or task, process and log it and display the 
results on X-Windows. Using Perl scripts to to 
control a realtime device from an ordinary PC 
may seem ridiculous, but it works surprisingly 
well. 

The rest of this paper is in five parts. Sec-
tion 2 is an introduction to realtime comput-
ing. Section 3 is an explanation of why real-
time computing is so hard to integrate with non-
realtime computing and why obvious methods – 
like making the standard kernel directly support 
realtime – are doomed to failure. Section 4 ex-
plains how RTLinux works and section 5 shows 
how to write applications. The last section cov-
ers future directions and has some random ac-
knowledgements. 

2 An introduction to realtime 
programming. 

“Realtime” is is an over-used term that can be 
used to mean “right away” or “fast” as in “re-
altime stock quotes”. RTLinux is addressed at 
hard realtime systems: those with timing dead-
lines that cannot be missed. The traditional 
uses for these systems are to control or mon-
itor some physical system or device such as a 
motor, an assembly line, a telescope, or an in-
strument. Telecommunications and networking 
devices often also need realtime control. Con-
sider the difference between the response time 
needed for text editor, a video display, and a 
program controlling the shutdown sequence of 
a liquid fuel rocket. � The text editor should respond quickly to 

user commands, but if it takes a half a sec-
ond to update a display every now and then, 
few users will notice. 

� Video displays should almost always keep 
up with the frame rate. A half a sec-
ond freeze will be noticed and a couple of 
freezes in a minute will make the system 
unpleasant. If the program starts dropping 
frames, it can sometimes use an algorithm 
to hide the missing frames by interpolation. � The rocket shutdown sequence must meet 
deadlines or the rocket may explode. A sin-
gle freeze of a half a second at the wrong 
moment might have a spectacular and ter-
minal result. 

So the text editor needs to be fast and respon-
sive, the video display needs to usually meet 
timing deadlines and the rocket control needs 
to be able to guarantee response times. In the 
CS literature, the video display would be called 
a soft realtime system, and the rocket control 
would be called a hard realtime system [13, 12]. 

Most hard realtime applications have failure 
modes that are not as spectacular as those of liq-
uid fuel rockets, but they need guaranteed timing 
nonetheless. If you are controlling a servo mo-
tor through the parallel port of a cheap PC[8], 
each timing jitter of 10 microseconds causes an 
error of one degree. If you are collecting data 
from a scientific instrument or video frame grab-
ber, a missed deadline may result in missed data 
or even a confused device. For high speed net-
works, a delay of a couple of microseconds may 
drop a packet and cause a major performance 
loss as the system times out and requests a re-
transmit. The distinctive property of hard real 
time systems is this requirement for guaranteed 
timing – an average time response of 5 millisec-
onds on our rocket controller will not make up 
for a single worst case of 100 milliseconds. 

Hard realtime systems cannot use av-
erage case performance to compen-
sate for worst case performance. 
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Suppose that we have a board that samples 
analog lines and produces an 8 bit result every 
100 microseconds. Most boards like this are de-
signed with hardware buffers right now so that 
they can compensate for the non-realtime behav-
ior of Microsoft Windows and NT. The analog to 
digital device generates samples and puts them 
in the buffer. If the buffer is deep enough, say 
with room for 512 samples, then we won’t lose 
any data if we read the buffer at least once ev-
ery 50 milliseconds. There are three problems 
with this scenario. The first problem is that even 
though 50 milliseconds is a long time, it is easy 
to miss the deadline in even a moderately loaded 
system. Ordinary Linux can’t keep up, even us-
ing the so-called “realtime” POSIX extensions. 
A second problem is that if the hardware has 
to cope with software timing uncertainties, the 
hardware becomes more complex and costly. Fi-
nally, if we need to control a device – to react to 
data “in real time” – then 50 milliseconds may 
be too long and the hardware buffers may cause 
instability as they introduce delays in the control 
loop. 

RTLinux provides support for hard realtime 
programs and will, in the future, offer sup-
port for some kinds of quality of soft realtime. 
RTLinux leaves the problem of “fast” applica-
tions to standard Linux. Making non-realtime 
applications run fast is incredibly complex. It 
turns out that much of what you can do to 
speed up the non-realtime performance of appli-
cations introduces unpredictable delays that are 
unhealthy for realtime. The obvious example is 
paging of virtual memory. If 99.99% of program 
memory references are in the page cache, and if 
a hit takes one time unit and a miss takes 500 
time units, then over a sufficiently large time pe-
riod the average access time is ���� time units – 
virtual memory is practically free. On average, 
virtual memory is a major performance win, be-
cause processes will be able to run as if there 

was a much larger amount of memory available 
— with close to zero cost. On the other hand, 
a realtime task that misses its first 10 pages will 
take 5000 time units to do what could otherwise 
be done in 10 time units and this worst case per-
formance is what matters. 

Because of these problems, back in the far 
past3 realtime systems were hand made, simple 
contraptions designed by tough, rugged, engi-
neering types who scorned compilers and vir-
tual memory and thought that alphanumeric dis-
plays were unnecessary luxuries. In these sys-
tems, optimizing worst case performance was 
quite straightforward. In fact, many realtime 
systems still are designed as loops that execute 
on a bare machine. The program loops through 
a list of simple tasks and the longest time before 
a task will run is the sum of the execution times 
of all the tasks on the list. 

counter=500;
while(1){

if(data_on_sensor()){
read_sensor();
compute_output();
counter--;

}
if(!counter){
output();
counter=500;
}

}

The problem with this design is that is does 
not scale. As realtime applications get more 
complex, they need more complex support. If 
you want to have a realtime control program for 
an aircraft engine diagnostic system that moni-
tors hundreds of sensors and also needs to dis-
play graphical data, interact with a database, 
connect to a network and even run a web inter-
face, then writing a control loop system is out of 

3Well before Dave Miller was born. 
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the question. The problem then becomes one 
of keeping the fast, predictable operation that 
you can get from control loop on a bare ma-
chine, while running in a much more sophisti-
cated software environment. One solution is to 
add realtime support to a non-realtime kernel, 
but that’s not as simple as it may sound. 

3 You can put racing stripes 
on a bulldozer, but it won’t 
go any faster. 

Before describing how RTLinux works, it is 
worthwhile to explain why what seems like a 
more straightforward approach does not work. 
You could just take an operating system like 
Linux and stick realtime support into the kernel. 
For example, you could allow for “realtime” 
processes with locked memory (so there were 
no delays while virtual memory was swapped 
in) and a special scheduler to always run these 
processes first and in a predictable order. This 
approach is exemplified in the part of the POSIX 
1003.13[10] standard called “Multi-Purpose Re-
altime System Profile” (PSE54). RTLinux does 
not try to meet this standard, but standard 
Linux does support PSE54 compliant mlock 
(memory lock) and sched setsched (spe-
cial schedule) system calls and POSIX RT sig-
nals. 

To see how well the POSIX PSE54 approach 
works under standard Linux, we can write a sim-
ple program that asks to be specially scheduled 
and then calls udelay to suspend itself for, say, 
50 milliseconds. On a Pentium, it is possible 
to read the processor cycle counter before and 
after this delay to get reasonably precise tim-
ing. We can set up a loop and look for aver-
age and worst case delay. On an idle standard 
Linux system, the task is remarkably precise: 

the time for 1000 trips through the loop is rock 
solid and the worst case deviation from aver-
age is about 100 microseconds in my test on a 
333MHz dual PII system. But when I/O activity 
begins, the worst case deviation rapidly rises to a 
half a millisecond and if one starts up Netscape, 
the worst case deviation exceeds a couple of 
milliseconds. A simple test program that 
does write(1,buff,BIGNUMBER) causes 
the “realtime” task to experience delays of over 
18 milliseconds — even though the average re-
mains unchanged. Ordinary standard Linux pro-
cesses, of course, do a lot worse. So we could 
not reliably use the data acquisition card dis-
cussed above if all we had to work with were 
standard Linux processes and POSIX PSE54. 
For comparison, the same test on RTLinux gives 
worst case difference between minimum and 
maximum (not between max and average) of un-
der 25 microseconds – almost 1000 times better. 
Running the RTLinux task at 500 microsecond 
intervals gives identical precision, and Linux 
continues to run quite well. Running the POSIX 
“realtime” process at 500 microsecond intervals 
stops Linux completely. 

No other general purpose OS does any bet-
ter than standard Linux in mixing RT with stan-
dard services — all for the same reasons. The 
most obvious problem is that the most useful 
design rule for general purpose operating sys-
tems is: optimize the common case. Thus, Linux 
SMP locks are exceptionally fast when there is 
no contention — the common case – and pay 
a significant price when there is contention. To 
use another design would slow down general op-
eration of the system in order to optimize some-
thing that should happen only rarely. Similarly, 
standard Linux interrupt handling is really fast 
for a general purpose operating system. In some 
of our measurements, standard Linux averages 
2 microseconds to get to the interrupt handler 
on reasonably standard x86 PCs. That’s impres-
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sive and it is critical for making users of graphi-
cal user interfaces and interactive networks feel 
happy. Worst case behavior is not so impressive 
and some interrupts are delayed by hundreds of 
microseconds. The problem is that it is not so 
easy to figure out how to decrease worst case 
without increasing average case. 

If you look at Linux code long enough, you 
will see many more fundamental contradictions 
with realtime requirements. A few examples 
should make the case. � “Coarse grained” synchronization means 

that there are long intervals when one task 
has exclusive use of some data. This 
will delay the execution of a realtime task 
that needs the same data structures. “Fine 
grained” synchronization, on the other 
hand, will cause the system to spend a lot 
of time uselessly locking and unlocking 
data structures, slowing down all system 
tasks. Linux uses coarse grained schedul-
ing around some of its core data structures 
because it would be stupid to slow down 
the whole system to reduce worst case. � Linux will sometimes give even the most 
unimportant and nicest task a time-slice, 
even when a more important task is 
runnable. It would not be smart to never 
run a background process that cleans up log 
files, even if a higher priority computation 
is willing to use up all available processor 
time. But in a realtime system, the high-
est priority task should not wait for a lower 
priority task. In a realtime system, you can-
not assume that low priority tasks will ever 
make progress – but in a general purpose 
operating system we do assume that low 
priority tasks will progress. � Linux will reorder requests from tasks to 
make more efficient use of the hardware. 

For example, disk block reads from the 
lowest priority processes may take prece-
dence over read requests from the highest 
priority process so to minimize disk head 
movement or to improve chances of error 
recovery. � Linux will “batch” operations to make 
more efficient use of the hardware. For 
example, instead of freeing one page at a 
time when memory gets tight, Linux will 
run through the list of pages clearing out 
as many as possible — delaying execu-
tion of all processes. It would be counter-
productive for Linux to run the swapper 
each time a page was needed, but the worst 
case certainly gets a lot worse. � Linux will not preempt the execution of 
even the lowest priority tasks during system 
calls. While the RC5 process is in the mid-
dle of “fork”, a message that arrives for the 
video display process will sit on the queue. 
To get around this problem, Linux would 
have to put in preemption points that would 
slow down all system calls. � Linux will make high priority tasks wait for 
low priority tasks to release resources. If 
the RC5 program allocates the last network 
buffer and the robot arm controller needs 
to send a message to stop the robot arm, 
the robot arm controller will just have to 
wait until some other process frees a net-
work buffer. 

You could argue that since there are operating 
systems mixing realtime and standard services 
in the same kernel, the above must be wrong. 
Those systems work, and are substantial techni-
cal achievements, but they are complicated and 
quite slow. You can have deterministic worst 
case behavior time on Solaris RT, but the worst 
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case is really worse than you might be willing to 
tolerate. In the academic realtime literature, it is 
often stated that realtime does not require speed, 
it requires determinism (fixed worst case tim-
ings). That’s true as far as it goes, but you can’t 
do realtime video editing if your worst case be-
havior only allows for a frame rate of one frame 
every 2 seconds. 

Since realtime and general purpose operating 
systems have contradictory design goals, it is 
not surprising that what is smart in one system is 
deadly in another. If we attempt to satisfy both 
design goals in the same system, we end up with 
something that does neither very well. 

4 The RTLinux solution 

About 20 years ago, researchers at Bell Labs 
built an experimental operating system called 
MERT[9]. This operating system was intended 
to run both realtime and general purpose appli-
cations. But instead of trying to make one op-
erating system that could support both, MERTs 
designers tried to make a system in which a 
realtime operating system and a general pur-
pose (time-sharing) operating system worked to-
gether. The designers wrote: 

... the availability of a sophisticated 
time-sharing system in the same ma-
chine as the realtime operating sys-
tem provides powerful tools which can 
be exploited in designing the man-
machine interface to the real-time pro-
cesses. 

That is, MERT’s designers claimed that by 
decoupling the realtime OS from the non-
realtime OS, they were able to allow applica-
tion developers to use the services of the non-
realtime OS 4 

4The MERT paper appeared in a famous 1978 issue 
of the Bell Systems Technical Journal. This issue also 

RTLinux works by treating the Linux OS ker-
nel as a task executing under a small realtime 
operating system. In fact, Linux is the idle 
task for the realtime operating system, execut-
ing only when there are no realtime tasks to run. 
The Linux task can never block interrupts or pre-
vent itself from being preempted. The techni-
cal key to all this is a software emulation of in-
terrupt control hardware. When Linux tells the 
hardware to disable interrupts, the realtime sys-
tem intercepts the request, records it, and returns 
to Linux. Linux is not ever allowed to really dis-
able hardware interrupts. No matter what state 
Linux is in, it cannot add latency to the realtime 
system interrupt response time. When an inter-
rupt arrives, the RTLinux kernel intercepts the 
interrupt and and decides what to do. If there 
is a realtime handler for the interrupt, the han-
dler is invoked. If there is no realtime handler, 
or if the handler indicates that it wants to share 
the interrupt with Linux, the interrupt is marked 
pending. If Linux has asked that interrupts be 
enabled any pending interrupts are emulated and 
the Linux handlers are invoked – with hardware 
interrupts re-enabled. 

No matter what Linux does, whether Linux 
is running in kernel mode or running a user pro-
cess, whether Linux is disabling interrupts or en-
abling interrupts, whether Linux is in the middle 
of a spin-lock or not, the realtime system is al-
ways able to respond to the interrupt. 

RTLinux decouples the mechanisms of 
the realtime kernel from the mecha-
nisms of the general purpose kernel so 
that each can be optimized indepen-
dently and so that the RT kernel can 
be kept small and simple. 

carried articles reporting on porting C code to multiple 
machines (a novel idea at the time), a new text process-
ing system called troff, the programmers workbench, and 
the original papers on UNIX and C. You should read it or 
reread it. 
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RTLinux is designed so that the RT kernel 
never has to wait for the Linux side to release 
any resources. The RT kernel does not request 
memory, share spin-locks, or synchronize on 
any data structures — except in tightly con-
trolled situations. For example, the communica-
tion links used to move data between RT tasks 
and Linux processes are non-blocking on the RT 
side: there is never a case where the RT task 
waits to queue or dequeue data. The near fail-
ure of the Mars Lander was caused by an in-
teraction between a realtime task and an oper-
ating system service that assumed it was ok to 
de-schedule a process. One VxWorks task ac-
quired a semaphore and a high priority task was 
then put to sleep when it tried to write to a pipe 
protected by that semaphore. RTLinux does not 
have any such hidden points of synchronization. 

Of course, it doesn’t do much good to have 
a realtime system that can’t communicate at 
all with the non-realtime system, so RTLinux 
provides both shared memory (using a crude 
method right now) and also a device interface 
that lets Linux processes read and write to real-
time tasks. 

One of the key design principles of RTLinux 
is that the more that is done in Linux — and 
the less that needs to be done on the RT side — 
the better. Linux takes care of system and de-
vice initialization and of any blocking dynamic 
resource allocation. Device initialization can be 
left to Linux. There cannot be any realtime con-
straints at boot time, so there is no need for the 
RT system to be involved. Blocking dynamic 
resource allocation is left to Linux. Any thread 
of execution that is willing to be blocked when 
there are no available resources cannot have 
hard realtime constraints. For example, there is 
no way for a RT task to call malloc or kmalloc or 
any other memory allocator. If the task does not 
statically allocate memory, it does not have ac-
cess to that memory. Finally, RTLinux relies on 

the Linux loadable kernel module mechanism to 
install components of the RT system and to keep 
the RT system modular and extensible. Loading 
a RT module is not a realtime operation and it 
can also be safely left to Linux. The job of the 
RT kernel is to provide direct access to the raw 
hardware for realtime tasks so that they can have 
minimal latency and maximal processing when 
they need it. Anything else just gets in the way. 

So RTLinux is a variation, a better variation 
in my humble opinion, of the basic idea found 
in MERT. Around the same time that we de-
veloped and released RTLinux, Greg Bollella 
[4, 3] was working on putting a realtime ker-
nel on the same machine as the general purpose 
IBM MicroKernel and a little later two compa-
nies produced systems in which a realtime ker-
nel shares the machine with Windows NT [2, 5]. 
All of these systems use some variation on the 
technique of putting a virtual machine layer be-
tween the general purpose OS and the interrupt 
hardware. The low level times measured by the 
Radisys authors [6] and by Bollella are similar 
to the RTLinux times: reflecting mostly the lim-
itations of PC motherboard design. It’s irritat-
ing to observe an out-of-order execution, deeply 
pipelined, highly cached, 400MHz processor, 
turn into an expensive space heater as it negoti-
ates a 8 bit ISA bus path to its legacy original-PC 
system timer. 

5 Using RTLinux 

RTLinux is very much module oriented. To use 
RTLinux, you load a modules that implement 
whatever RT capabilities you need. Two of the 
core modules are the scheduler and the module 
that implements RT-fifos. If the services pro-
vided by these modules don’t meet the require-
ments of the application, they can be replaced 
by other modules. For example, there are two 
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Figure 1: Flow of data and control 

alternative scheduling modules — a “earliest 
deadline first” scheduler implemented by Ismael 
Rippol[11] and a rate-monotonic scheduler im-
plemented by Oleg Subbotin (see the rtlinux.org 
web page)5. The basic scheduler simply runs 
the highest priority ready RT task until that task 
suspends itself or until a higher priority task be-
comes ready. 

The original RTLinux scheduler (written by 
Michael Barabanov) used the timer in “one 
shot” mode so that it could easily handle a col-
lection of tasks with periods that had a small 
common divisor. For example, if one task must 
run every ��� time units and the other runs ev-
ery ���� time units, there is no good choice for 

5The academic CS literature is deeply concerned with 
the right way to schedule RT tasks. My theory is that 
nobody knows yet, and that the OS should not make the 
choice. 

a timer period. In one-shot mode, the clock 
would be set first to generate an interrupt af-
ter 331 time units and then reprogrammed af-
ter the interrupt to generate a second interrupt in 
another ��� time units (minus the time needed 
to reprogram the clock). The price we pay is 
that we reprogram the clock on every interrupt. 
For x86 generic motherboards, reprogramming 
the clock is relatively slow. It turns out, how-
ever, that many applications don’t need the gen-
erality of a one-shot timer and can avoid the ex-
pense of reprogramming. Professor Paolo Man-
tegazza of the Aerospace Engineering Depart-
ment in Politecnico di Milano wrote a scheduler 
that demonstrated the utility of periodic mode 
and encouraged us to put it into the standard 
scheduler6. The current RTLinux scheduler of-

6Professor Mantegazza is also responsible for debug-
ging floating point support in RTLinux. 
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fers both periodic and “one shot” modes. On rtf_get is the non-blocking read opera-�
SMP systems the problem gets simpler because 
there is an on-processor high frequency timer 
chip that is available to the RTL system. 

5.1 The API 

The standard API for Version1 (based on the 2.0 
Linux kernel) is as follows. � rtl_request_irq and 

rtl_free_irq. These activate and 
deactivate interrupt handlers. � rt_get_time returns the time in “ticks”. � rt_task_delete destroys a task and 
frees its resources. � rtl_task_init sets up, but does not 
schedule a task. � rt_task_make_periodic asks the 
periodic scheduler to the run task at a fixed 
period (given as a parameter). � rt_task_suspend takes the task off the 
run queue. � rt_task_wait yields the processor un-
til the next time slice for this task. � rt_task_wakeup wakes up a sus-
pended task. � rt_use_fp allows the task to use floating 
point operations. � rtf_create creates a fifo. � rtf_create_handler attaches a rou-
tine that runs under the Linux kernel to 
a fifo so that user processes can be made 
runnable when there is data available. � rtf_destroy frees a fifo. 

tion for realtime tasks. � rtf_put is the non-blocking write opera-
tion for realtime tasks. � rtf_resize changes the size of data in 
the fifo. � rtl_set_periodic_mode optimizes 
the system for running a collection of tasks 
that share a common fundamental period. � rtl_set_oneshot_mode optimizes 
the system for cases where periodic mode 
is not appropriate. 

In the Version2 (based on Linux 2.2) many of 
these calls have an alternate form with an addi-
tional parameter for cpu identifier. On a SMP 
system, a task is associated with a particular cpu 
and is only scheduled by the scheduler on that 
cpu. Also, on SMP systems, some interrupts are 
local and need to be given handlers per/cpu. 

5.2 Examples 

5.2.1 Squares 

Figure 2 shows how a program to produce a 
square wave on the parallel port output would 
be written. 

This program would be compiled as a mod-
ule, and insmod is used to start it. When 
the module starts, it runs initialization code that 
constructs a single task using rt task init 
and then asks the realtime scheduler to run the 
task every 450 ticks of the clock. On a SMP 
x86 system, we have a more sophisticated timer 
that used the processor clock, but on the stan-
dard motherboards we are still stuck with the an-
tique i8353 – a vestige of the original IBM PC. 
In spite of this embarrassment, this task is never 
more than about 40 microseconds late or early, 
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Soon after this was written, at the urging of Barabanov and because of our discovery of the "minimal" POSIX profile, we made a transition to the POSIX threads API and the POSIX 1003.13 PS51 profile. This was done in order to reduce the barrier to entry for new programmers who were used to POSIX and also to avoid a process of incrementally reinventing POSIX. That is, we found ourselves needing to add to the nice simple fast API and saw that eventually we'd end up with something as big and ugly as the threads API, but different. Different should imply better and we did not have a real idea on how to make a larger API a lot better. 

Now I do, though.
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/* Module to toggle output on the parallel port */
RT_TASK my_task;
#define STACK_SIZE 3000

void code_for_rtl_task(unsigned int pin) {
static unsigned char bits = 0;
while(1){
if(bits)bits = 0;
else bits = (1<< pin);
/* write on the parallel port */
outb(bits, LPT_PORT);
/* wait till next period */
rt_task_wait();
}

}

int init_module(void)
{
RTIME now = rt_get_time();
/* Initialize a task with code code_for_rtl_task,

pin 3 ,stack size STACK_SIZE and priority 1 */
rtl_task_init(&my_task, code_for_rtl_task, 3, STACK_SIZE, 1);
/* run every 450 8253/4 ticks

(about 50 milliseconds)*/
rtl_task_make_periodic(&mytask, now, 450 );
return 0;

}

Figure 2: Square wave RT program 
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One of the real achievements of RTLinuxPro was a system, due to Cort Dougan, that hid all the module nonsense from users so that they had a "main" routine and the code looked like standard POSIX threads code. This required a lot of innovations in dynamic linking.



on anything from an old 386 to a 500Mhz PIII, 
no matter what load is running in the system. 

5.2.2 Collecting data 

To make something like the analog/digital con-
verter discussed above work, we would write 
two pieces of code. The first would be a realtime 
module that would poll the device and then put 
data into a realtime fifo. The other piece of code 
would read the fifo and would run as a Linux 
user process. The major change from the paral-
lel port toggling example would be in the main 
loop of the function code for rtl task 
which might be written something like this: 

while(1){
read_data_from_hardware;
rtf_put(FIFO_ID,data,size);
/* wait till next period */
rt_task_wait();

}

On the Linux side, the realtime fifos are 
devices: rtf0,rtf1 .... The Linux side 
task could be a one line shell script: 

cat /dev/rtf0 > logfile

5.2.3 Interrupt handlers 

Instead of using the calls to the scheduler mod-
ule – rtl task wait, rtl task init, and 
rtl task make periodic – we could sim-
ply attach our function to a timer. Using similar 
task code, we could change the initializing code 
as follows. 

int init_module(void)
{
rtl_request_irq(CMOS_CLOCK,\

handler_ptr);
INIT_CMOS_CLOCK(FIFTYMS);

return 0;
}

Our cleanup code for the module would call 
rtl free irq. The code for the handler 
would look like the code for task, except instead 
of calling rtl task wait it would reset the 
CMOS clock to allow further interrupts. 

6 What next and acknowledg-
ments 

A 2.2 version of RTLinux was released in 
January 1999 with some missing features, but 
with improved support of SMP. A fully func-
tional version will, I hope, be released in 
March. Ports are underway to Alpha and to 
PowerPC. SMP with larger numbers of proces-
sors is a key goal over the next few months. 
We are also rewriting the scheduler to sup-
port the minimal POSIX RT standard (not 
from the PSE54 standard mentioned earlier) and 
are looking at how to support QOS (quality 
of service) assurances for soft realtime tasks 
[12]. Other developments are several commer-
cial packages for RTLinux under development. 
See http://www.rtlinux.com for com-
mercial links. Linus Torvalds once said that 
the RTLinux core would become integrated with 
the standard kernel in 2.3, but the availability of 
pre-patched kernels makes this a less pressing 
issue. News and code can always be found at 
http://www.rtlinux.org. 

At New Mexico Tech, RTLinux develop-
ment has been funded mostly by USENIX 
(http://www.usenix.org). There is 
(GPL) RTLinux development now being car-
ried out on a commercial basis and this 
is being financed by industrial contracts. 
RTLinux was first implemented by Michael 
“FZ” Barabanov[1]. As with all open-source 
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We really should have applied for a patent on the RT-fifo as well. Later on we folded RTFifos into POSIX open/read/write very satisfactorily but the mechanism of being locked on the non-RT side and being unlocked on the RT side was innovative.
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We made a sad discovery soon after about the economics of GPL software in the embedded world. Roughly it goes like this: tiny companies investing a lot of engineering in GPL software development cannot make profits.  It turns out that in the embedded market, this extends to medium sized companies. The reason is fairly obvious: you try to sell services competing with companies that don't have your development expenses - and who profit from your marketing expenses for the technology.



projects, RTLinux is a collaborative effort. 
Thanks to the Linux kernel developers for such a 
useful idle task and thanks to the RTLinux users 
for being so enthusiastic and brave and for con-
tributing code, ideas, and interesting stories. 
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