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Fic. 20. A smoothing and requantizing device.

If the input voltage to this device is some excitation voltage, Y, which
has been smoothed by the capacity at the input grid, then the plate voltage
described above can be used as the requantized response voltage, y. Its
complement, y’, appears at the other plate terminal.

In use in complicated switching circuits such a requantizing circuit
would replace the delay lines at the secondary delay locations where
hazards exist. The smoothing at each of these locations could be made
as great as necessary to eliminate the effect of hazards by adding sufficient
capacity at the input grid of the device.

Completion of the Analogy. In case this requantizing device (or some
similar one) is used at each secondary delay location we will have a circuit
completely analogous to one using relays. The voltage (high or low) from
the electronic excitation network corresponds to the transmission (unity
or zero) of the contact network exciting a relay; the smoothed excitation
voltage corresponds to the magnetic field of the relay; the two comple-
mentary requantized response voltages correspond to the complementary
transmissions of the normally open and normally closed contacts on the
relay. <
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Abstract: Finite automata are considered in this paper as instruments for
classifying finite tapes. Each one-tape automaton defines a set of tapes, a
two-tape automaton defines a set of pairs of tapes, et cetera. The structure
of the defined sets is studied. Various generalizations of the notion of an
automaton are introduced and their relation to the classical automata is
determined. Some decision problems concerning automata are shown to be
solvable by effective algorithms; others turn out to be unsolvable by
algorithms.

INTRODUCTION

Turing machines are widely considered to be the abstract prototype of
digital computers; workers in the field, however, have felt more and more
that the notion of a Turing machine is too general to serve as an accurate
model of actual computers. It is well known that even for simple calcula-
tions it is impossible to give an a prior: upper bound on the amount of tape
a Turing machine will need for any given computation. It is precisely this
feature that renders Turing’s concept unrealistic.

In the last few years the idea of a finite automaton has appeared in the
literature. These are machines having only a finite number of internal
states that can be used for memory and computation. The restriction of
finiteness appears to give a better approximation to the idea of a physical
machine. Of course, such machines cannot do as much as Turing machines,
but the advantage of being able to compute an arbitrary general recursive
function is questionable, since very few of these functions come up in
practical applications.

Many equivalent forms of the idea of finite automata have been pub-
lished. One of the first of these was the definition of “nerve-nets” given

* The bulk of this work was done while the authors were associated with the
IBM Research Center during the summer of 1957.
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by McCulloch and Pitts.> The theory of nerve-nets has been developed
by authors too numerous to mention. We have been particularly influenced,
however, by the work of S. C. Kleene? who proved an important theorem
characterizing the possible action of such devices (this is the notion of
“regular event” in Kleene’s terminology). J. R. Myhill, in some unpub-
lished work, has given a new treatment of Kleene’s results and this has
been the actual point of departure for the investigations presented in this
report. We have not, however, adopted Myhill’s use of directed graphs as
a method of viewing automata but have retained throughout a machine-
like formalism that permits direct comparison with Turing machines. A
neat form of the definition of automata has been used by Burks and Wang!
and by E. I'. Moore,* and our point of view is closer to theirs than it is to
the formalism of nerve-nets. However, we have adopted an even simpler
form of the definition by doing away with a complicated output function
and having our machines simply give “yes” or “no” answers. This was also
used by Myhill, but our generalizations to the “nondeterministic,” “two-
way,” and “many-tape” machines seem to be new.

In Sections 1-6 the definition of the one-tape, one-way automaton is
given and its theory fully developed. These machines are considered as
“black boxes” having only a finite number of internal states and reacting
to their environment in a deterministic fashion.

We center our discussions around the application of automata as devices
for defining sets of tapes by giving “yes” or “no” answers to individual
tapes fed into them. To each automaton there corresponds the set of those
tapes “accepted” by the automaton; such sets will be referred to as definable
sets. The structure of these sets of tapes, the various operations which we
can perform on these sets, and the relationships between automata and
defined sets are the broad topics of this paper.

After defining and explaining the basic notions we give, continuing work
by Nerode,® Myhill, and Shepherdson,” an intrinsic mathematical char-
acterization of definable sets. This characterization turns out to be a
useful tool for both proving that certain sets are definable by an auto-
maton and for proving that certain other sets are not.

In Section 4 we discuss decision problems concerning automata. We
consider the three problems of deciding whether an automaton accepts
any tapes, whether it accepts an infinite number of different tapes, and
whether two automata accept precisely the same tapes. All three problems
are shown to be solvable by effective algorithms.

In Chapter II we consider possible generalizations of the notion of an
automaton. A nondeterministic automaton has, at each stage of its opera-
tion, several choices of possible actions. This versatility enables us to
construct very powerful automata using only a small number of internal
states. Nondeterministic automata, however, turn out to be equivalent
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to the usual automata. This fact is utilized for showing quickly that
certain sets are definable by automata.

Using nondeterministic automata, a previously given construction of
the direct product of automata (Definition 7), and the mathematical
characterization of definable sets, we give short proofs for various well-
known closure properties of the class of definable sets (e.g., the definable
sets form a Boolean algebra). IFurthermore we include, for the sake of
completeness, a formulation of Kleene’s theorem about regular events.

In trying to define automata which are closer to the ideal of the Turing
machine, while preserving the important feature of using only a preassigned
amount of tape, another generalization suggests itself. We relax the
condition that the automaton always move in one direction and allow the
machine to travel back and forth. In this way we arrive at the idea of a
two-way automaton. In Section 7 we consider the problem of comparing
one-way with two-way automata, a study that can be construed as an
investigation into the nature of memory of finite automata. A one-way
machine can be imagined as having simply a keyboard representing the
symbols of the alphabet and as having the sequence from the tape fed in
by successively punching the keys. Thus no permanent record of the tape
is required for the operation of the machine. A two-way automaton, on
the other hand, does need a permanent, actual tape on which it can run
back and forth in trying to compute the answer. Surprisingly enough, it
turns out that despite the ability of backwards reference, two-way auto-
mata are no more powerful than one-way automata. In terms of machine
memory this means that all information relevant to a computation which
an automaton can gather by backward reference can always be handled
by a finite memory in a one-way machine.

In Chapter III we study multitape machines. These automata can read
symbols on several different tapes, and we adopt the convention that a
machine will read for a while on one tape, then change control and read on
another tape, and so on. Thus, with a two-tape machine, a set of pairs of
tapes is defined, or we can say a binary relation between tapes is defined.
Using again the powerful tool of nondeterministic automata, we establish a
relationship between two-tape automata and one-tape automata. Namely,
the domain and range of a relation defined by a two-tape automaton are
sets of tapes definable by one-tape automata. I'rom this follows the fact
that, unlike the sets definable by one-tape automata, the relations definable
by two-tape automata do not form a Boolean algebra. The problems
whether a two-tape automaton accepts any pair of tapes and whether it
accepts an infinite number of pairs are shown to be solvable by effective
algorithms.

We conclude with a brief discussion of two-way, two-tape automata.
Here even the problem whether an automaton accepts any tapes at all is
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not solvable by an effective algorithm. I'urthermore a reduction of two-way
automata to one-way automata is not possible. Allin all, there is a marked
difference between the properties of one-tape automata and those of two-
tape automata. The study of the latter is yet far from completion.

CHAPTER 1. ONE-TAPE, ONE-WAY AUTOMATA

1. The intuitive model and basic definitions. An automaton will be
considered as a black box of which questions can be asked and from which
a “yes” or “no” answer is obtained. The number of questions that can be
asked will be infinite, and for simplicity a question is interpreted as any
arbitrary finite sequence of symbols from a finite alphabet given in advance.
An easy way to imagine the act of asking the question of the automaton
is to think of the black box as having the separate symbols on a typewriter
keyboard. Then the machine is turned on and the question is typed in;
after an “end of question” button is pressed, a light indicates a “yes » or
“no” answer. Other good images of how the automaton could appear
physically would use punched cards. Suppose that we punch just one
symbol or code number for a symbol to a card; then a question is simply a
stack of cards. The automaton is asked a question by having the stack
read in a card at a time in the usual way.

For the purposes of this paper, we shall not use either of the above
images but rather think of the questions as given on one-dimensional tapes.
The machine will be endowed with a reading head which can read one square
of the tape (i.e., one symbol) at a time, and then it ean advance the tape
one unit and read, say, the next square to the right. We assume the
machine stops when it runs out of tape. So much for the external character
of an automaton.

The internal workings of an automaton will not be analyzed too deeply.
We are not concerned with how the machine is built but with what it can
do. The definition of the internal structure must be general enough to
cover all conceivable machines, but it need not involve itself with problems
of circuitry. The simple method of obtaining generality without unneces-
sary detail is to use the concept of internal states. No matter how many
wires or tubes or relays the machine contains, its operation is determined
by stable states of the machine at discrete time intervals. An actual
existing machine may have billions of such internal states, but the number
is not important from the theoretical standpoint—only the fact that
it is finite.

As a further simplifying device, we need not consider all the intermediate
states that the machine passes through but only those directly preceding
the reading of a symbol. That is, the machine first reads a symbol or
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square on the tape, then it may pass through several states before it is
ready to read the next symbol. To be able to mimic the action of the auto-
maton, we need not remember all these intermediate states but only the
last one it goes into before it reads the next square. In fact, if we make a
table of all the transitions from a state and a symbol to a new state, then
the whole action of the machine is essentially described.

Finally, to get the answer from the machine, we need only distinguish
between those states in which the “yes” light is on and those states in
which the “no” light is on when the end of the question is reached. Again,
for simplicity, it is assumed that all states are in one category or the other
but not in both. Thus the whole machine is described when a class of
designated states corresponding to the “yes” answers is given. It remains
now to give a precise mathematical form to these ideas.

First a finite alphabet Z is given and fixed for the rest of the discussion.
The actual number of symbols in the alphabet is not important. It is only
important that all the automata considered use the same alphabet so that
different machines can be compared. TFor illustration we shall often think
of = as containing only the two symbols 0 and 1. By a tape we shall
understand any finite sequence of symbols from Z. We also include the
empty tape with no symbols to be denoted by A. The class of all tapes is
denoted by 7. If z and y are tapes in T, then xy denotes the tape obtained
by splicing = and y together or by juxtaposing or concatenating the two
sequences. In other words, if

T =001 O and Y= ToTy 5. Tm_1;

then
XYy =0001...00—1T0T1 . -Tm—1,

where the ¢’s and 7’s are in . We assume as obvious the two laws

Az = zA = z, and z(yz) = (zy)?,

for all z, y, z in T. In mathematical terminology, T' together with the
operation of juxtaposition forms the free semigroup (with unit) generated
by Z.

We shall often have occasion to cut tapes into pieces. Ior example, let

X =00901...0p—-1,

the ¢’s are in = and n is referred to as the length of the tape z. We adopt
the following notation
X1 = OOk41.--01—1,

where & < I < n. In other words x; is a section of z running from the
(k + 1)** symbol of z through the I*h symbol. Clearly, the length of
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wrris L — k. We will agree that if & = [, then pr; = A, the tape of length
0. As a useful property of the notation, we have

T = Tk kTn,
where &k < n, or more generally

kCm = k%1 1Tm,

where k <1 < m < n.

We shall refer to such tapes as v as the initzal section or tnitial portion
of x of length k.

The obvious notation 2™ for xxx . ..z multiplied together n times will
also be used with the convention that @® = A.

Having explained all the notations for the tapes that will be fed into the
machines, we turn now to the formal definition of an automaton.

DEerFiNiTION 1. A (finite) automaton over the alphabet Z is a system
A = (S, M, so, F), where S is a finile non-empty set (the internal
states of A), M is a function defined on the Cartesian product S X 2
of all pairs of states and symbols with values in S (the table of transitions
or moves of %), so is an element of S (the initial state of A), and F s
a subset of S (the designated final states of ).

Let % be an automaton. Ifirst of all the function A/ can be extended
from S X = to S X T in a very natural way by a definition by recursion
as follows:

M(s, A) = s, forsinS;
M(s,za) = M (M(s, z),0),forsin 8,z in T, and o in Z.

The meaning of M (s, x) is very simple: ¢t is that state of the machine
obtained by beginning in stale s and reading through the whole tape x symbol
by symbol, changing states according to the given table of moves. It should
be at once apparent from the definition of the extension of M just given
that we have the following useful property:

M(s, xy) = M(M(s, z), y), for all sin S and , y in 7.

We may now easily define the set of those tapes which cause the autom-
aton to give a “yes” answer.

DeriNiTION 2. The set of tapes accepted or defined by the automaton
A, in symbols T(N), s the collection of all tapes x tn T such that
M(sg, x) isin .

DerFiNITION 3. The class of all definable sets of tapes, in symbols 3,
18 the collection of all sets of the form T(N) for some automaton .
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The meaning of acceptance can be made clearer by a diagram. Let
T =0¢...04_1. Foreachk < n,let

sk = M (s, 0xx),
so that for £ > 0 we have

Sk = M(Sk—1,0%—1).

The condition that x be in 7'(Y) is that s, be in F. Each s is the state of
the machine ¥ after reaching the k*" symbol in the tape z. Thus if we write
down the following diagram:

gy g, () On-—1

So S1 Sg 83...81 Sny

we have a complete picture of the motion of the machine 9 across the tape
x. It is very important to notice in this picture that there is exactly one
more internal state than there are symbols on the tape, a fact that will be
used several times in Section 4.

2. A mathematical characterization of definable sets. An automaton
can be a very complicated object, and it is not clear exactly how compli-
cated the sets definable by automata can become. In order to understand
the nature of these definable sets, we will develop in this section a mathe-
matically simple and completely intrinsic characterization of these sets,
which shows exactly the effect of considering machines with only a finite
number of internal states. This “finiteness” condition is certainly the
main feature of our study.

Actually two different characterizations will be given, but they share a
common feature of involving equivalence relations over the set 7' of all
tapes. The reader is assumed familiar with the notion of an equivalence
relation and equivalence classes.

DeriNiTiON 4. An equivalence relation R over the set T of tapes is
right invariant if whenever xRy, then xzRyz for all z in T

Clearly there is an analogous definition of left-tnvariant equivalence
relations.

DEeriNITION 5. An equivalence relation over the set T is a congruence
relation if ut is both right and left invariant.

If R is a congruence relation then the formulas xRz and yRw always
imply ayRzw. In consequence, if [z] is the equivalence class containing z,
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and [y] is the equivalence class containing y, then we can define unambigu-
ously the product of the two equivalence classes by the equation

[z]ly] = [zy].

In mathematical terms, the set of equivalence classes is said to be the
quotient semigroup of T under the congruence relation R and is called a
homomorphic image of T. There are many distinct homomorphic images of
T, but we shall be most interested in those that are finite. Somewhat more
generally we shall make use of equivalence relations satisfying the following
definition.

DEFINITION 6. An equivalence relation over T s of finite index f
there are only finitely many equivalence classes under the relation.

With these definitions, we may now state the first result on characterizing
definable sets. This theorem is due to J. R. Myhill and is published with
his kind permission.

Tueorem 1. (Myhill) Let U be a set of tapes. The following three
conditions are equivalent:

(i) Ussmn3;

(ii) U s the union of some of the equivalence classes of a congruence
relation over T of finite index;

(iii) the explicit congruence relation = defined by the condition that for
allz, yin T, x = y if and only if for all z, w in T, whenever zzw s in
U, then zyw is in U, and conversely, is a congruence relation of finite
index.

Proof: Assume (i) and in particular that U = T'(¥) for a suitable autom-
aton %. Define a relation R by the condition that zRy if and only if
M(s, z) = M(s, y) for all sin S. Clearly R is an equivalence relation, but
it is also a congruence relation. For assume that 2Ry and z is any tape in
T. Then

M(s, x2) = M(M(S, x): z) e M(M(S, Y), Z)
= M(s, yz), for all sin S.
Thus R is right invariant. Likewise
M(s, 2x) = M(M(S, z)r IC) == M(M(s: z)r y)
= M(s, zy), for all sin S,

and R is shown to be left invariant.
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That R is of finite index is a consequence of the fact that if x is a fixed
tape and r is the number of internal states of o, then the expression M (s, z)
can assume at most r different values. Thus the number of equivalence
classes is at most r”.

Finally if z is in T'(%) and xRy, then M(sg, x) = M (s, y) so that y is
in T(NA) also. This remark shows that U = T'(X) is in fact the union of
the equivalence classes under R of those tapes in U. We have thus shown
that (i) implies (ii). ;

Assume next that statement (ii) holds, and let R now stand for any
congruence relation satisfying the conditions mentioned in (ii). Consider
the specific relation = defined in (iii) in terms of U. Let z and y be any
tapes such that xRy. Suppose that zzw is in U. Now R is a congruence
relation, so that zzwRzyw. On the other hand U is a union of equivalence
classes. Thus zyw must also be in U. This argument actually shows that
if xRy, then 2 = y. In other words, = is a relation making fewer distinc-
tions than the relation B. That = is a congruence relation is a trivial
consequence of its definition, so if R is of finite index, then = must neces-
sarily be of finite index too. Hence, (ii) implies (iii).

Finally, assume that (iii) holds. We must define an automaton A such
that U = T(N). To this end, let S be the set of equivalence classes under
the congruence relation = . Define the function M by the formula:

M([z], 0) = [2a],

where the square brackets indicate the formation of equivalence classes.
Notice we need only the fact that = is right invariant to see that the
definition of M is unambiguous. Further, let s = [A], and finally let F be
the set of all [x] where z is in U. It should be obvious that U is indeed a
union of equivalence classes under =. A simple inductive argument shows
that if M is extended in the way indicated in Section 1 to the set S X T,
then M ([z], y) = [zy]forall z, yin 7. Thus we see at once that M (sg, z) =
M([A], ) = [z]isin F if and only if z is in U; in other words U = T'(¥),
as was to be shown. Hence, (iii) implies (i), and the proof of Theorem 1 is
complete.

The main trouble with Theorem 1 is that the number of equivalence
classes under the relation = can become very large as is indicated in the
proof that (i) implies (ii). To be more economical and to stay closer to the
simpler automata defining the set U, one should use only right-invariant
equivalence relations rather than demanding congruence relations. The
following theorem is formulated in an exactly parallel fashion to Theorem
1 and is essentially a simplification of a theorem by A. Nerode,® who used
a somewhat more involved notion of automaton than that adopted here.
The principle is very useful and was employed by J. C. Shepherdson” in a
proof of the main theorem of Section 7, as is explained there.
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Turorrm 2. (Nerode) Let U be a set of tapes. The following three
conditions are equivalent:

(1) Ussind;

(ii) U 1s the union of some of the equivalence classes of a right-invariant
equivalence relation over T of finite index;

(iii) the explicit right-invariant equivalence relation. E defined by the
condition that for all x, y in T, x By tf and only if for all zin T, whenever
2z is in U, then yz is in U, and conversely, is an equivalence relation
of finite index.

The proof need not be given in detail because it can be copied almost
word for word from the proof of Theorem 1. It should only be mentioned
that the relation R in the proof that (i) implies (ii) has the simpler definition:

xRy if and only if M(sg, x) = M(so, ¥).

This implies that the number of equivalence classes for R is at most the
number of internal states of . This remark and an analysis of the full
proof leads directly to the following corollary.

CoroLLARY 2.1. If U s in 3, then the number of equivalence classes
under the relation I 1s the least number of internal stales of any autom-
aton defining U.

In other words, the relation E leads at once to the most economical
automaton defining U. This remark is also due to Nerode.

As a simple application of Theorem 1, we shall show that the set U of all
tapes of the form 010" for n = 0, 1, 2, . . . is not definable by any autom-
aton. Suppose to the contrary that U is in 3. Consider the relation =
of Theorem 1 (iii). This relation would have to be of finite index, so that
for some integers n > m we would have 0" = 0™. It follows at once that
0"10™ = 0"10"™, and hence that 0"10™ is in U, which is impossible. Thus
U cannot be in 3.

3. Closure properties of the class of definable sets. Using the theorems
just given in the preceding section, we can derive very simply some facts
about the class 3. It turns out that 3 can be actually characterized by its
closure properties under some natural operations on sets of tapes, but the
discussion of this fact will be delayed to Section 6. Sometimes it is easier
to use Theorems 1 and 2 and sometimes it is easier to give direct con-
structions of machines. In this section we shall indicate how the Boolean
operations can be done in both ways. Iirst, however, we prove two theo-
rems that seem to be easier by the indirect method.
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Tusorum 3. Ifxisin T, then {x}, the sel consisting only of x, s in 3.

Proof: Clearly an automaton can be built which recognizes one and only
one tape given in advance; however, Theorem 2 is easier to apply. The
relation E defined in Theorem 2 (iii) in terms of U = {x} simply means
that y£z if and only if whenever y and z are initial segments of the tape z,
then y = 2. Thus E has one equivalence class for each initial segment of
x and one extra equivalence class for all the rest of the tapes. Obviously
E then is of finite index, which completes the proof.

If x is any tape, then it can be turned end-for-end and written back-
wards. Let x* stand for the result of writing x backwards so that if * =
001+ * " On_y, then 2* = 0,_10,_o - - - 09. Clearly we have the rules:

0% ="u, foroin Z,
A* = A,
=g
and
(@y)* = y*a*.

In case U is any set of tapes, U* will denote the set of all * where x isin U.

The motion of an automaton, according to the definitions of Section 1,
is always from left to right. Thus from the original definition, the following
result is a little surprising.

TueoreM 4. If U isin 3, then U* is in 3.

Proof: The content of the theorem is that if a set of tapes is definable,
then so is the set obtained by writing all the defined tapes backwards. The
direct construction of a machine defining U* from a given machine defining
U is rather lengthy, but Theorem 1 makes the result almost obvious. Let
= be the relation defined in terms of U from Theorem 1 (iii) and let =* be
the analogous relation for U*. Assume that z =* y. If zz*wisin U, then
(zx*w)* is in U*. But (zz*w)* = w*zz*. Hence, w*yz* is in U* also;
however, w*yz* = (zy*w)*, and so zy*wisin U. This shows that 2* = y*.
Since U** = U, this argument with U and U* interchanged is also valid,
and we have proved that x =* y if and only if 2* = y*, for all x, y in T.
Clearly then, if = is of finite index, then =* must be also of finite index
with the same number of equivalence classes, which completes the proof.

TuroreM 5. The class 3 is a Boolean algebra of sets.

Proof: That the class 3 is closed under complements is the most obvious
fact, even from the original definition. For if U = T(A) where A =
(S, M, so, '), then T — U = T(B), where B = (S, M, so, S — F). One
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need only prove in addition that 3 is closed under intersections. Supposc
that U, and U, are in 3. By Theorem 2, let B, and R, be two right-
invariant equivalence relations of finite index such that U; is a union of
equivalence classes under R; for ¢ = 1,2. Consider the equivalence rela-
tion R3 = Ry N Ry, in other words xR3y if and only if R,y and xRzy.
Rj3 is, of course, right invariant. Every equivalence class under Rj3 is an
intersection of equivalence classes under R; and R,. Hence, the number of
equivalence classes for R3 is at most the product of the numbers for R,
and R,. We see, then, that R is of finite index. Now U; N Ujis simply a
union of intersections of the two kinds of equivalence classes, so that
U, N U, is a union of equivalence classes under Rj3, which shows that
U; N Ugisin 3 by Theorem 2. The proof is complete.

COROLLARY 5.1. The class 3 contains all finite sets of tapes.

This is a direct consequence of Theorems 3 and 5.
The proof of Theorem 5 may seem too abstract. To make it more direct,
we show next how to form at once a machine defining the intersection.

DEFINITION 7. Let A = (S, M, s, F) and B = (T, N, to, G) be
two automata. The direct product A X B s that automaton (S X
T, M X N, (so, to), ' X Q) where S X T and F X @ are the Cartesian
products of sets, (so, o) ts the ordered pair of so and to, and the function
M X N on (S X T) X Z is defined by the formula

(M X N)((s,0),0) = (M(s,0),N(t,0))
forall sin S, tin T, and o in Z.

TueoreM 6. If U and B are automata, then
TA X B) = TA) n T(VB).

Proof: An obvious inductive argument shows that for all tapes x we have
(M X N)((s, 1), z) = (M(s,x), N(t,x)) for all sin S and ¢ in 7. Now
zisin T(A X B)if and only if (M X N)((so, to), ) = (M (so, 2), N(to, z))
isin F X G. This in turn is equivalent to the conjunctions of conditions
that M(so, x) is in F and N (¢, x) is in G; in other words, z is in T'(%) N
T(B), as was to be shown.

4, The emptiness problem. Suppose someone gave you an automaton
A = (S, M, so, F) without telling you what it was supposed to do. The
gift might turn out to be an elaborate practical joke, and T'(2) could very
well be empty. Now a person would not want to spend the rest of his life
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feeding all the infinite number of possible tapes into the machine if all the
answers are going to be the same. Thus one would like to know an upper
bound on the number of tapes that need be tried to determine whether the
machine is of any use. Such an upper bound is supplied by the next theorem.

TuroreMm 7. Let U be an automaton. Then T(N) is not empty +f and
only if A accepts some tape of length less than the number of internal
states of .

Proof: We need only establish the implication from left to right. Assume
that T'() is not empty and indeed that z is a tape in 7'(2) of minimal
length. Let n be the length of = and let r be the number of internal states of
9. By way of contradiction, assume that r < n. It follows at once that
there must exist integers k < [ < n such that

M (s0, oxx) = M(s0, o1),

where ozx and (z; are the initial segments of z of length k and I. Consider
the tape 2’ = ok 12, Which is shorter than . We have

M (so, 2") = M(s0, 0%k 1Zn)
= M (M(so, o2#), 1%n)
= M (M (so, o%1), 1n)
= M(so, o%1 1Zn)
= M(so, 2)

because + = ¢z; 1Z,. Hence 2’ must be in T'(%) also, which contradicts the
minimum conditions on z and proves that n < r.

COROLLARY 7.1. Given a finite automaton U there is an effective
procedure whereby in a finite number of steps it can be decided whether

T(N) s empty.

The corollary is an immediate consequence of the fact that Theorem 7
shows that there are only a finite number of tapes that need be tried, and
any one tape can be run effectively through a machine once the table of
moves has been given. It is also possible to give a simple necessary and
sufficient condition of a similar nature for 7'(%) to be infinite. We precede
that result by a lemma.

LemMa 8. Let U be an automaton with r internal states. Let x be a
tape in T(N) of length n. If r < n, then there exist tapes y, z, w such
that x = yzw, z # A, and all the tapes yz"w are in T(A) for m =
g8 .
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Proof: As in Theorem 7, there must exist integers k < 1 < n such that
ﬂ[(SO, o.’L‘k) = M(So, 0(13[).

Lety = ;oxk, z = rx;, W = . Since k < I, we see that z = A. Clearly
x = yew, and yz = o1, hence M(so, y) = M(so, y2). It follows then at
once by induction that M(so, y) = M (o, y2™). Whence we derive

M (so, x) = M (s0, yzw)
= M (M(so, y2), w)
= M(M(so, yz™), w)
= M(so, yz"w).

Thus all the tapes yz™w are also in 7'().

Tusorem 9. Let A be an automaton with r internal states. Then
T() is infinite if and only if it conlains a tape of length n with
r < n<2r,

Proof: The implication from right to left is a direct consequence of
Lemma 8. Assume that 7'(2) is infinite. The alphabet Z is finite, and so
T'(2) must contain tapes of length greater than any integer. Let 2 be a tape
in T(A) of length n > r. As in the other two proofs, there must exist
integers k < ! < m such that

M((so, oxx) = M (80, 0T1)-

Now take a new tape z which is of minimal length of any tape in 7'(%)
for which integers k < [ exist satisfying the above equation. Assume fur-
ther that I is the least such integer < n = the length of . We no longer
know that n > r. Thusif ¢ < j < [, then

M (so, o%s) # M(s0, 0%;)-

Since there are at most r values for the function M to assume, this proves
that I < r. Further, if I < 7 < j < n, then

]‘/I(SO; Oxi) 7 M(SO’ Oxj);

since otherwise the tape 2’ = (xi jz, would be a shorter tape than z
satisfying the given conditions on z. Counting the number of indices
between I and n, we see that n — I + 1 < r. Adding ! to both sides and
applying the previous inequality, we find n + 1 < 2r, or better, n < 2r.
If » < n, then the proof would be complete; however, this may not be the

s
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case. Assume that n < r. Let y = oxx, 2 = xx;, w = 1&,. We have
z # A, and all tapes y2™w are in T'(X). Let m be the least integer such that

r<k+ml—k +@®n—1.
Clearly m # 0,sincek + (n — 1) < n <r. If

2r<k+mil —k)y4+ (n — 1),
then
r<k+m—1D0—k+@—0D,

because I — k < n < r. But this is impossible because m was chosen
as the least such integer. Hence

k+mil—Fk)+(n—1) <2r

and the number on the left is the length of y2™w, which proves that there
is some tape in 7'(N) of the indicated length.

CoROLLARY 9.1. Given a finite automaton U, there is an effective
procedure whereby in a finite number of steps it can be decided whether
T(N) s infinite.

" CorOLLARY 9.2. Let U be a finite automaton with r internal stales,
and let the alphabet = have ¢ > 1 symbols. Then if T(N) s finile, it

can have at most
pla gl
; = e 1 tapes.

Notice also that Lemma 8 gives another proof that the set of tapes of
the form 0™10" is not definable by any finite automaton.

Finally we shall treat in this section the question of deciding whether
two automata define the same set of tapes.

DeriNiTION 8. Two automata A and B are equivalent tf T(A) = T'(V).

TaeoreM 10. Two automata N and B are not equivalent if and only +f
there is a tape x of length less than the product of the number of internal
states of U by that of B which s accepted by one machine but not by the
other.

Proof: Let A’ be the machine having the same internal states as % and
defining the complement of 7'(2) as in the proof of Theorem 5. Similarly
for B. A and VB are not equivalent if and only if one of the sets 7'(A X V'),
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T X B) is not empty. The theorem follows now directly from Theorem
7, Theorem 6 and Definition 7.

CoroLLARY 10.1. Given two finite automata A and B, there is an effec-
tive procedure whereby in a finite number of steps it can be decided
whether I and B are equivalent.

All the results of this section are quite evident from the literature, e.g.,
Burks-Wang,! Section 2.2. Only Theorem 10 and its corollary are a little
stronger than the corresponding results there because of a wider definition
of equivalence of automata. These results are nonetheless included for
completeness, since the general approach here is rather different.

CHAPTER II. REDUCTIONS TO ONE-WAY AUTOMATA

5. Nondeterministic operation. The automata used throughout Chapter
I were strictly deterministic in their tape-reading action, which was
uniquely determined by the table of moves, since there was one and only
one way the machine would change its state in any particular situation.
Requiring all machines to be of this form can lead to rather cumbersome
details, in view of the large number of internal states needed even for some
relatively elementary operations. In this section we introduce the notion
of a nondelerministic automaton and show that any set of tapes defined
by such a machine could also be defined by an ordinary automaton. The
main advantage of these machines is the small number of internal states
that they require in many cases and the ease in which specific machines
can be described. Several examples of their use will be found in Section 6.

DerFiNITION 9. A nondeterministic (finite) automaton over the
alphabet Y is a system A = (S, M, So, F) where S is a finite set, M is
a function of S X Y with values in the set of all subsets of S, and So and
F are subsets of S.

A nondeterministic automaton is not a probabilistic machine but rather
a machine with many choices in its moves. At each stage of its motion
across a tape it will be at liberty to choose one of several new internal states.
Of course, some sequence of choices will lead either to impossible situations
from which no moves are possible or to final states not in the designated
class F. We disregard all such failures, however, and agree to let the ma-
chine accept a tape if there is at least one winning combination of choices
of states leading to a designated final state.
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The following definition makes this convention precise.

DerINITION 10. Let A be a nondeterministic automaton. The set
T() of tapes accepted by A s the collection of all tapes

X =00901...0n1
for which there exists a sequence Sq, 81, . .., S, of internal states of
A such that
(i) sgzsin So;
(1) sy esen-M(8;..1,05 1), fort =1,2,.°0. 'n;

(iii) s, zsn F.

It is readily seen that if % is a nondeterministic machine such that M (s, o)
consists of exactly one internal state for each s in S and ¢ in Z, then U is
really the same as an ordinary automaton, and 7'(2) will contain the
expected tapes. Thus ordinary automata are special cases of nondeter-
ministic automata, and we shall freely identify the ordinary machines
with their counterparts.

One might imagine at first sight that these new machines are more
general than the ordinary ones, but this is not the case. We shall give a
direct construction of an ordinary automaton, defining exactly the same
set of tapes as a given nondeterministic machine.

DeriniTioN 11.  Let A = (S, M, Sy, F) be a nondeterministic
automaton. D(A) is the system (T, N, to, G) where T is the set of all
subsets of S, N s a function on T' X Z such that N (t, o) is the union
of the sets M (s, o) for sint, to = Sy, and G is the set of all subsets of S
containing at least one member of F.

Clearly D() is an ordinary automaton, but it is actually equivalent to 2.

TreorEM 11. If U 7s a nondeterministic automaton, then
TA) = T(DX)).

Proof: Assume first that a tape * = g0y ...0,_1 is in T(A) and let
So, 81, - - - , S» be a sequence of internal states satisfying the conditions of
Definition 10. We show by induction that for k < n, s is in N (¢, o).
For k = 0, N(to, oxx) = N(to, A) = to = So and we were given that s is
in Sp. Assume the result for k — 1. By definition, N(to, oxx) =
N (N(to, o%x—1), 0k—1). But we have assumed s;_; is in N(lo, oTk—1) SO
that from the definition of N we have M (sx_;,0%—1) C N(to, oxx). How-
ever, s is in M (sx—1, 0k—1), and so the result is established. In particular
8y is in N(to, o%n) = N (o, x), and since s, is in F, we have N(io, z) in G,
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which proves that x is in 7(D()). Hence, we have shown that
T®) C T(DW)).

Assume next that a tape z = 0y ...0,_; is in T(D(Y)). Let for
each k < n, tx = N(to, oxx). We shall work backwards. First, we know
that ¢, is in G. Let then s, be any internal state of A such that s, is in ¢,
and s, is in F. Since s, is in

tn e N(tO; Oxn) = N(tn—-ly an—l):

we have from the definition of N that s, is in M (sp—1,0,—1) for some
Sp—1 in tn—-l- But

ho1 = N(tO; Oxn—l) = N(tn—2, 0’,,_2),

so that s,_; is in M (s,_g, 0n_2) for some s,_z in {,_2. Continuing in this
way we may obtain a sequence, 8p, Sn—1, Sn—2, - - ., So such that s is in
tk; Sk isin M (sx—1, 0k—1), for k > 0; and s, isin F. Since {o = So, we also
have so in So, which proves that z is in 7'(%). Thus, T(D()) C T'(%),
which completes the proof.

This theorem has many interesting consequences. I'or example, it shows
that any automaton with several initial states can be replaced by an
equivalent automaton with but one initial state. It would seem that the
notions of final state and initial state should be dual in some sense. But
one must be careful, because, as the reader may easily show for himself,
with the alphabet Z = {0, 1} the set of all tapes of the form 0™ or 1"
cannot be defined by any deterministic automaton with but one designated
final state. The correct notion of duality between initial and final states is
connected with the reversal of right and left, as indicated in the next

definition and theorem.

DeriniTiON 12. Let A = (S, M, Sy, F) be a nondeterministic autom-
aton. The dual of U is the machine A* = (S, M*, F, S,) where the
function M* is defined by the condition

s’ is in M*(s, o) if and only if s s in M (s, o).

Notice that we have at once the equation 2** = 9. Therelation between
the sets defined by an automaton and its dual is as follows.

Tueorem 12. If A is a nondeterministic automaton, then

T = TA*
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Proof: In view of the equality 2** = A, we need only show T'(A*) C
TD*. Letx = 090y ...0,—1 be a tape in T'(A*); we must show that z*
isin T'(A). Let so, 1, . . ., 8» be the sequence of internal states of * such
that sg isin F, s, is in Sy and si is in M*(sx_;,0%—1) fork = 1,2, ... n.
Define a new sequence sg, s, ..., s, by the equation s; = s,_; for
k < n. Obviously, sg is in S and s;, is in F. Further, for &k > 0 and
k <, 8k—1 = Sp_k41 1S in M*(8,_k, 0n_x), Or in other words, s,_ = s
isin M (sz_1, 0n_r). Now defining a new sequence of symbolsa¢ay . . .on_;
by the formula o = ¢,_x_;, we see thatoy_; = d,_randalo]...0n_;
= za*. Thus, 2* is in T'(A) as was to be proved.

It should be noted that Theorem 12 together with Theorem 11 yields a
direct construction and proof for Theorem 4 of Section 3 which was first
proved by the indirect method of Theorem 1. In the next section we make
heavy use of the direct constructions supplied by the nondeterministic
machines to obtain results not easily apparent from the mathematical
characterizations of Theorems 1 and 2.

6. Further closure properties. Simplifying a result due originally to
Kleene, Myhill in unpublished work has shown that the class 3 can be
characterized as the least class of sets of tapes containing the finite sets
and closed under some simple operations on sets of tapes. We indicate
here a different proof using the method developed in the preceding section.

First of all, we need to define the operations on sets of tapes. Let U
and V be two sets of tapes. By the complex product UV of U and V we
understand the collection of all tapes of the form zy with 2 in U and y in V.
Clearly the product of sets satisfies the associative law:

(UV)W = U(VW).

This leads to the introduction of finite exponents where we define U™ =
UU ... U{n times) with the convention that U® = {A}. Finally, if U is
a set of tapes we can form the closure of U, in symbols cl(U), which is the
least set V containing U, having A as an element, and such that whenever
x,y are in V then zy is in V. Another definition is given by the equation

() = U2 UUtubs.
where the infinite union extends over all finite exponents. We may prove

at once that the class J is closed under these operations.

TaEOREM 13. The class 3 s closed under the formation of complex
products and closures of sets in 3.

Proof: Assume first that U, V arein 3. Let U = T () and V = T(D)
where % and LB are ordinary automata with % = (S, M, sy, F) and
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B = (T, N, ty, G). We need only find a nondeterministic machine € such
that UV = T(€). We may assume that the sets S and T have no elements
in common, and then equate € = (S U T, P, Eo, G), where Eq = {s, to}
if spisin F and ¢y isin G, and E¢g = {so} if either s( is not in F or ¢, is not
in G, and the function P is defined as follows:

P(s,0) = {M(s,0)}, if sisin S and M (s, o) is not in F;
P(s,0) = {M(s,0), to}, if sisin S and M (s,0) isin F;
P(s,0) = {N(s,0)}, if sisin T.

The straightforward proof that € has the desired property is left to the
reader.

Next, we must show why ¢l(U) is in 3. We construct a machine D such
that cl(U) = T(D), where D is allowed to be nondeterministic. Simply
let ® = (S, Q, {so}, F U {so}), where the function @ is defined as follows:

Q(s,0) = {M(s,0)}, ifsisin S — F;
Q(s,0) = {M(s, ), M(s0,0)}, if sisin F.

The easy completion of the proof is left to the reader.

TureoreM 14. (Kleene-Myhill). The class 3 is the least class of sets of
tapes containing the finite sets and closed under the formation of unions,
complex products, and closures of sets.

The full proof of Theorem 14 will not be given. Instead we give a brief
account of the method of proof needed. Let U be the least class closed under
the operations mentioned in the theorem. That U C 3 is the content of
Theorems 5, 5.1, and 13. To prove that 3 C U, consider each set in J to be
of the form T'(A), where 2 is nondeterministic, and proceed by a kind of
induction on 2. In more precise terms, define the weight of ¥, in symbols
|2], to be the sum of all the cardinal numbers of the sets M (s, o) for all s
in S and ¢ in =. Then by assuming that 7'(B) is in U for all B with |B| <
|2], one can prove that 7'() is also in U. The details, however, are tiring.

This discussion completes our survey of the closure properties of the class
of definable sets begun in Section 3, and the authors are not aware of any
other interesting operations on sets that can be effected by constructions
of automata that we have not already indicated. The remainder of this
paper will be therefore devoted to generalizations of the notion of an
automaton.
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7. Two-way automata. Trying to further generalize the notion of an
automaton, we consider automata which are not confined to a strict
forward motion across their tapes. This leads to the following definition,
which is a direct extension of Definition 1.

DerFiNiTION 13. Let L = {—1,0, 4 1}. A two-way (finite) autom-
aton over a finite alphabet Z is a system A = (S, M, so, F) where S
18 a finite non-empty set (the set of internal states of A), M is a function
from S X Z into L X S (the table of moves of %), sg zs an element of S
(the initial state of A), and F is a subset of S (the set of designated final
states of A).

A two-way automaton U operates as follows: When given a tape, i.e., a
finite linear sequence of squares each containing a single symbol of the
alphabet Z, 9 is set in internal state s, scanning the first (leftmost) square of
the tape. At each stage of the machine’s operation, if the internal state is
s, the scanned symbol isa, and M (s,0) = (p, '), where pisoneof —1,0, 1,
then % will move one square to the left, stay where it is, or move one square
to the right, according as p = —1, 0, 1; furthermore, % will enter internal
state s’. The operation described just now is called an atomic step of .
After completion of an atomic step, % is again in a certain internal state
scanning a certain symbol, and a new atomic step is performed, and so on.

If, when operating in this way on a given tape, % will eventually get off
the tape on the right side and at that time be in a state in F, then we shall
say that the tape is accepted by . The formal definition is as follows:

DEeriNiTION 14. The set T'(N) of tapes accepted by the two-way autom-
aton U 7s the set of all sequences o ...0,_; of symbols from the
alphabet Z for which there exist an inleger m > 0, a sequence of
integers by, . . . , bm, and a sequence s, . . . , sy, of internal states of A
such that

(i) bo = 0 and sq s the initial state of U;

() 0 <b;<nfort=20...,m—1;

(iii) by = n and s,, 180 F;

@iv) (b — bi_y, 8) = M(s,-_l,tn,‘,_l) Jora=1:"..,m

In the above definition the sequence by, . .., b, should be interpreted
as the sequence of positions of the machine ¥ on the tape; thus, b; — b;_;
indicates the change in position of the machine from time ¢ — 1 to time <.
Condition (ii), for example, means that the machine does not run off the
tape before the computation has been completed.

In analogy with Definition 3 we shall say that a set P of tapes is definable
by a two-way automaton if there exists some two-way automaton 9 such that
TN = P,
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To avoid confusion we shall, from now on, refer to the automata dis-
cussed in Sections 1-6 as one-way automata.

Let us consider an example of a two-way machine illustrating the
complicated fashion in which such a machine can operate on a given tape.
Let %, B, and €, be three one-way automata over the same alphabet 2.
We combine these automata into a single two-way automaton D having
the following flow diagram. Given a tape ¢ the automaton A (which we
imagine as being a part of D) starts reading it on the left end and proceeds
from left to right until a designated final state of 9 is reached; when this
happens D goes into the initial state of B and starts reading the tape from
right to left until a designated final state of 2 is reached; when this happens
® switches into the initial state of 9 and again starts moving from left to
right, and so on; all this time automaton € is reading the tape symbols as
they come in (i.e., in the sequence in which they are being scanned by D)
and ¢ is accepted by ® only if D ever gets off the right-hand end of ¢ and
at that time € is in one of its final designated states. It seems to be quite
difficult to determine the kind of set of tapes defined by ©. It turns out,
to our surprise, that the following theorem holds.

THEOREM 15. For every two-way automaton U there exists a one-way
automaton A such that T(A) = T(A). Furthermore, A can be obtained
effectively from A.

Outline of Proof:* By definition, a Z-motion of % on a tape ¢ consists of A
moving across a square z in a certain direction up to a square y, changing
direction at y and moving back towards z, again changing direction before
passing z and moving up to y; a Z-motion thus contains exactly two
changes of direction. While operating on a tape ¢ a two-way automaton
will in general perform a complicated succession of forward and backward
motions before accepting or rejecting ¢. In particular, % will go through a
great number of Z-motions.

s x 7
’ > Ly
/ ’ = y. s

In a given Z-motion in the diagram, the internal state s’ in which A
re-enters y is a function of the state s in which ¥ originally entered y and the
portion of the tape from z to y. If it were possible to compute this new
state &', without actually having to move back, then we could substitute

* The result, with its original proof, was presented to the Summer Institute
of Symbolic Logic in 1957 at Cornell University. Subsequently J. C. Shepherdson
communicated to us a very elegant proof which also appears in this Journal.”
In view of this we confine ourselves here to sketching the main ideas of our proof.

i

|

————
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for A a new automaton which, instead of turning back at y, would simply
go directly from state s into state s’ and thus the Z-motion would be elimi-
nated. It turns out that the computation of s’ from s is indeed possible
because the set R(s, s") (L(s, s")) of tapes such that when % starts on the
right-(left) hand end it will go through a simple loop (i.e., move directly
to some square, change direction there, and go straight back to where it
started) and arrive back in state s’, is definable by a one-way automaton.
Combining 2 with these one-way automata it is possible to define a new
derived automaton 9’ which on any given tape ¢ performs fewer Z-motions
than 2 does and such that 7'(A’) = T'(A). We then show that, by repeating
this derivation operation a sufficient number of times, a one-way automaton
is obtained which defines the same set as 2. This depends on the fact that
there is a bound, common to all tapes ¢ accepted by 2, on the number of
times A goes through any square of ¢; this bound being the number of in-
ternal states of U.

CoroLLARY 15.1. The equivalence problem for two-way automata s
effectively solvable.

Proof: Given two two-way automata A and 8B, to decide whether 7'(N) =
T'(%B) construct one-way automata 3 and B such that T(A) = T(A) and
T(B) = T(BV); by the previous theorem this can be done effectively.
Apply now to ¥ and ¥ the procedure given in Corollary 10.1.

CHAPTER III. MULTITAPE AUTOMATA

8. Description and definitions. We turn now to the study of multitape
machines, fixing our attention, without any real loss of generality, on the
two-tape case. We can picture the two-tape machine ¥ as having two scan-
ning heads reading a pair (¢, t2) of tapes. We adopt the convention that
the machine will read for a while on one tape, then change control and read
for a while on the other tape, and so on until one of the tapes is exhausted.
When this happens 2 stops and the pair (¢;, ¢2) is accepted if and only if A
is in a designated final state. Thus, with a two-tape automaton, a set of
pairs of tapes is defined, or we can say a binary relation between tapes is
defined.

To make two-way automata more versatile we afford them the abil-
ity to anticipate the end of the tape. This arrangement consists in
augmenting the alphabet = with an end-marker € and always feeding into
the automaton pairs of the form (¢;¢, i2€); here ¢; and {3 do not contain ¢,
the latter being merely a technical symbol.

In order to indicate the change of control from one tape to the other we
use the device of dividing the states of the machine into two classes: the



86 M. O. RABIN * D. SCOTT

first class contains those states in which the first tape is being read, while
the second class has to do with the second tape. These remarks should
serve as sufficient background for the following formal definition.

DEeriniTION 15. A two-tape, one-way automaton over an alphabet =
is a system A = (S, M, s, F, Cy,C3) where (S, M, so, F) is an
ordinary automaton, except that M is a function from S X (2 U {€})
into S, and where the sets C'y, Cs form a partition of S, 1.e.,Cy N Cy =
and L1 0y — 8!

Thus a two-tape machine is just an ordinary automaton having an addi-
tional structure to determine which tape is to be read.

To be able to define explicitly when a pair of tapes is accepted by an
automaton, the following notation involving the partition of the set of
states is needed.

Let A = (S, M, s, F,Cy,C3) be a two-tape automaton and let s,

81, ..., 8y be a sequence of states (where s is the initial state). Then there
is a unique pair of associated sequences of integers ko, . .., kn;lo, ..., ln
such that:

(1) kiis 1 or 2 according as s; is in C; or Cg;
(ii) I; is the number of indices j < 7 such that s; is in Ck,-

DEriNiTION 16. The set of all pairs of tapes accepted by a two-tape
automaton U, in symbols Ta(A), is the set of all pairs (ty,ts) on the
alphabet T such that for

(t1€,t2€) = (010011 .. .01(m—1), 020021 - - - T2(n—1))

there is a (unique) sequence of states so, Si, ..., S, and associated

sequences of integers ko, . . ., ky; lo, . . ., l, such that

(i) s s the inatial state of U;

(ii) 8 = M(si—lyak‘_ll‘-_l) for g — 1, ey Dy

(iii) tf kp—y = lthenly_y = m — 1,and if kp—_; = 2 thenl,_, =

n—d;
@iv) spisin F.
In the above definition we are, of course, assuming that if k; = 1, then

l; <m and if k; = 2, then l; < n; otherwise condition (ii) would be
meaningless.

9. Relation to one-tape automata. Two-tape automata behave in a
fashion almost identical with that of one-tape automata, the one difference
being that they operate on two tapes. It is therefore natural to try to

e A D
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establish relationships between the sets of pairs of tapes definable by two-
tape machines and the sets of tapes definable by one-tape automata.

THEOREM 16. Let A = (S, M, so, F,Cy,C3) be a two-tape autom-
aton. The set of all tapes t; for which there exists some tape ty such
that (ty, t3) is in To(¥) (i.e., the domain of the relation defined by A)
1s definable by a one-tape automaton. An automaton defining this set
can 1n fact be constructed effectively from 9.

Proof: The idea underlying the proof is that on the first component of
any pair of tapes 2 operates like a nondeterministic one-tape machine.
Once we are able to define the one-tape, nondeterministic automaton ac-
cepting precisely the tapes ¢; for which (ty, ¢5) is in T'2(A) for some ¢, the
proof is completed by Theorem 11.

To shorten the argument we shall consider a slightly simplified version
of the notion of two-tape automata; namely, in Definitions 15 and 16 we
disregard the end symbol € and the special role it plays (it is possible to
extend the proof to cover the general case). A pair (¢, {5) is thus fed directly
into % and is said to be accepted if and when % gets off one of the tapesin a
designated final state of 9.

Let s” be in C; and s’ be in C3. A tape ¢ on the alphabet X is called a
(¢, §") transition tape if 9, when started on ¢ in s’ will go through states in
C until it gets off ¢ in s”. For every pair (s, s””) for which there exists some
transition tape, let i(s’, s”’) denote a shortest one. The length of ¢(s’, s”)
is clearly less than the number of states in C, so that all shortest transition
tapes, and hence all pairs of states possessing a transition tape, can be
effectively found.

A state s" in Cp will be called a finalizing state if there exists a tape £(s”)
such that %, when started on ¢(s’) in s, will go in states of C; to the end of
t(s") and get off the tape in a designated final state of 9.

Define now a nondeterministic one-tape automaton ¥ as follows. Let
J be some new element not in S, the set of states of B is C; U {f}. The
table NV of moves of L is defined by

i) N(f,e) = {f};
(ii) N(s,0) = {M(s,0)},if M(s,0) isin Cy;
- (iii) N(s,0) = {f}, if M(s, 0) is a finalizing state in C3;
(iv) N(s,0) = the set of all s where there exists a transition tape
t(M(s,a), s"), otherwise.

We now define Zy, the set of initial states of 8. Eo = {s,} if s, is in ;.
If 8o is in C'5 and sy is not finalizing, then E, is the set of s”” for which there
exists a tape t(so, ”’). If s is finalizing, then £, = {f}. The set of des-
ignated final states of B is (C; N F) U {f}.
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It is left for the reader to verify that the set of all tapes accepted by 8
is precisely the domain of the relation 7'3(%); we recall at this point the
simplified definition of acceptance used in the proof. This completes our
proof.

CorOLLARY 16.1. There are effective procedures whereby, given a two-
tape automaton ¥, it can be decided in a finite number of steps whether
T2 () is empty and whether Ty (A) s infinite.

Proof: Construct the one-tape automata 8 and € defining the domain
and range of the relation 72(2). The set T5(%) is empty if and only if
T'(%) is empty. The set T'5() is infinite if and only if at least one of 7'(V)
and 7T'(€) is infinite. Now apply Corollaries 7.1 and 9.1.

CoroLLARY 16.2. If To(A) contains only pairs of the form (t,t)
(i.e., A defines a diagonal relation) then the set of all tapes t for which
(¢, t) is in T'2(A) s definable by a one-tape automaton.

10. Impossibility of Boolean operations. Whereas the class of sets
definable by one-tape automata is closed under the Boolean operations
(Theorem 5), when we come to sets of pairs definable by two-tape autom-
ata the situation is markedly different.

THEOREM 17. The class of all sets definable by two-tape automata s
(i) closed under complementation; (ii) not closed under intersection

and union.*

Proof: (i) Let A = (S, M, so, F, Cy,C3). The complement, with respect
to the set of all pairs of tapes on Z, of T3(¥), is T2((S, M, so, S — F, C4,
Cs)). (ii) Let = = {0,1} and use the notation 0" to denote the tape
containing n zeroes. The sets U = {(0"10™, 0¥10™), n, m, k = 1,2, ...}
and V = {(t,t),¢{ runs through all tapes} are definable by two-tape
automata. Now U N V = {(0"10*,0"10"),n = 1,2,...}. If this set
were definable by a two-tape automaton then, by Corollary 16.2, the set
{0"10",» = 1,2,...} would be definable by a one-tape automaton,
which is impossible. That the class of definable sets is not closed with
respect to unions now follows from the identity

UnNnV=T—-[(T—U)u (T —7V)]
and (i). ;

* J. C. Shepherdson informed us in a letter about a different simple example
for the fact that the class of definable relations is not closed under intersections.
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11. Unsolvability of the intersection problem. We have shown that
the emptiness problem for two-tape automata is effectively solvable. It
will now turn out that a similar elementary problem is not solvable. As a
preparation for this result concerning automata we must recall a theorem
of E. Post.®

The correspondence problem is the following: Given two equally long
ordered lists ay, as, . .., ay, and by, by, . . ., b, of tapes on the alphabet Z,
to decide whether there exists a sequence of indices 7y, 7,, . . ., ik, where
1 < i; < n, such that

ai G, - a;, = b,'lb,-’ P b,'k.
E. Post proved that the correspondence problem (for an alphabet with
more than one letter) is not effectively solvable.

THeorEM 18. The problem whether for two finite two-tape automata Ay
and Az we have T'3(Ay) N T2(Az) = ¢ (the empty set) is not effectively
solvable.

Proof: Corresponding to every sequence, a,, as, . . ., a, of words on our
alphabet 2 construct a set P(ay, as, .. ., a,) of pairs of tapes as follows:
We may assume that 0, 1 are in Z; if 7 is an integer let i be the tape consist-
ing of 7 symbols 1 followed by a single 0. Now (¢,, t5) isin Pla1, .as .. 5 dy)
if and only if for some k

() & = asai,--a;

(ll) t2 = iliz g ik, where ‘I:j S n.

It is not hard to construct a two-tape automaton %(ay, as, . . . yan) = A
such that T3(A) = P(ay, ay, ..., a,). Namely, to check whether a pair
(41, t2) satisfies conditions (i) and (ii), ¥ will start on ¢; and count the num-
ber of symbols 1 until the first 0 is met, let this number be 7;. The machine
then switches to ¢; and checks whether this tape begins with a; ; if it does
not, then (¢y, ) is not accepted. If ¢; does begin with a; , then after reading
through a;, the machine switches back to ¢, and the whole process is re-
peated. If at any time a symbol other than 0 or 1 is found on to, or if iy
contains a run of more than # symbols 1 or more than one symbol 0, then
the pair (i, {2) is not accepted. These remarks sufficiently indicate the
construction of ¥ and we shall not go into further detail.

Given two sequences of words S; = (a, as...,a,) and S; =
(b1, b, ..., by) then P(ay, ay,...,a,) N P(by, by, ..., b,) = ¢ if and
only if the Post correspondence problem of S; and S; has a solution. Since
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the correspondence problem is not effectively solvable it follows that the
problem whether

Tz(ﬂ(al, eieie s an)) A Tz(ﬂ(bl, ey bn)) #= ¢

is not effectively solvable.

12. Two-way, two-tape automata. Turning now to two-way, two-tape
automata we find that all hope of any constructive decision processes is
lost. It is even impossible to decide, by a constructive decision method
applicable to all automata, whether a two-way, two-tape machine accepts
any tapes. To prove this formally it is, of course, necessary to give the
explicit definition of a two-way machine. We shall not give the details
here, since they are long and not very much different from the formal defi-
nitions needed for two-way, one-tape automata. The main point is that,
as with the two-way, one-tape automaton, the table of moves of a two-way,
two-tape automaton sometimes requires the machine to back up from the
scanned square. However, an outline of the proof should clarify the
method.

It was shown above that there is no constructive decision method for
deciding whether two two-tape, one-way machines %; and U, both accept
a common pair of tapes, that is, whether T5(%;) N T2(Az) = ¢. From the
construction of the two-tape machines it follows that if & is a new symbol
not in the alphabet 2, then there is a one-one correspondence between all
two-tape, one-way machines 9 over = and certain two-tape one-way
machines A’ over Z U {h} such that a pair of tapes (¢, 2) is in T(2) if
and only if (ht,h, hioh) is in T'3(A’). In words, we simply put a marker at
the ends of the tapes, and all accepted tapes must be of this form. Let now
A, and A, be any two two-tape machines. The corresponding machines
over Z U {h} are Aj and A3. Now because A; and A, only accept tapes
with markers at the ends, they can be glued together into a two-way machine
B such that To(B) = Ta(A1) N T2(A3). The two-way motion of B
is obvious: first run through the tapes in the style of 2, to see if the pair
is accepted, and then, after hitting the markers at the right end, run back-
wards until the left markers are hit, at which time the motion is again
reversed, and the machine is started over, running in the style of s.

The outline of the construction given above shows that every inter-
section problem about one-way machines %; and %, is equivalent to the
intersection problem about machines ] and %3, which in turn is equivalent
to the emptiness problem for a two-way machine 8. Since there is an
effective method for showing these equivalences, and since there is no
effective solution of the intersection problem for one-way machines, we
have proved the following.
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THEOREM 19. There s no effective method of deciding whether the set
of tapes definable by a two-tape, two-way automaton is empty or not.

An argument similar to the one above will show that the class of sets of
pairs of tapes definable by two-way, two-tape automata is closed under
Boolean operations. In view of Theorem 17, this implies that there are
sets definable by two-way automata which are not definable by any one-
way automaton; thus no analogue to Theorem 15 holds.
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